
mohammad
Typewriter
www.FDL.ir

Javatm ME
Game

Programming

Second Edition

John P. Flynt, Ph.D.

Martin Wells

� 2008 Thomson Course Technology, a division of Thomson Learning

Inc. All rights reserved. No part of this book may be reproduced or

transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or

retrieval system without written permission from Thomson Course

Technology PTR, except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are

trademarks of Thomson Course Technology, a division of Thomson

Learning Inc., and may not be used without written permission.

Java is a trademark of Sun Microsystems, Inc. in the United States and

other countries.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software

support. Please contact the appropriate software manufacturer’s

technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted

throughout this book to distinguish proprietary trademarks from

descriptive terms by following the capitalization style used by the

manufacturer.

Information contained in this book has been obtained by Thomson

Course Technology PTR from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our sources,

Thomson Course Technology PTR, or others, the Publisher does not

guarantee the accuracy, adequacy, or completeness of any information

and is not responsible for any errors or omissions or the results

obtained from use of such information. Readers should be particularly

aware of the fact that the Internet is an ever-changing entity. Some facts

may have changed since this book went to press.

Educational facilities, companies, and organizations interested in

multiple copies or licensing of this book should contact the Publisher

for quantity discount information. Training manuals, CD-ROMs, and

portions of this book are also available individually or can be tailored

for specific needs.

ISBN-10: 1-59863-389-9

ISBN-13: 978-1-59863-389-4

Library of Congress Catalog Card Number: 2007923304

Printed in the United States of America

08 09 10 11 12 TW 10 9 8 7 6 5 4 3 2 1

Publisher and General Manager,

Thomson Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah O’Donnell

Manager of Editorial Services:

Heather Talbot

Marketing Manager:

Jordan Casey

Senior Acquisitions Editor:

Emi Smith

Marketing Assistant:

Adena Flitt

Project Editor:

Jenny Davidson

Technical Reviewer:

Marcia Flynt

PTR Editorial Services Coordinator:

Erin Johnson

Copy Editor:

Anne Smith

Interior Layout Tech:

ICC Macmillan Inc.

Cover Designer:

Mike Tanamachi

CD-ROM Producer:

Brandon Penticuff

Indexer:

Larry Sweazy

Proofreader:

Heather Urschel

Thomson Course Technology PTR,

a division of Thomson Learning Inc.

25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

eISBN-10: ÿ1-59863-627-8

http://www.courseptr.com

This book is dedicated to its readers.

Thanks to Emi Smith and Stacy Hiquet for arranging for the publication. To

Jenny Davidson, for watching over the schedule and making it happen. Also,

many thanks to Kevin Claver for help and support along the way. As always,

thank you Marcia for your faithful hard work, trust, guidance, and support.

Acknowledgments

John P. Flynt, Ph.D., has taught at colleges and universities, and has authored

courses and curricula for several college-level game development programs. His

academic background includes work in information technology, the social sci-

ences, and the humanities. Among his works are In the Mind of a Game, Perl

Power!, Java Programming for the Absolute Beginner, UnrealScript Game Pro-

gramming All in One (with Chris Caviness), Software Engineering for Game

Developers, Simulation and Event Modeling for Game Developers (with Ben Vin-

son), Pre-Calculus for Game Developers (with Boris Meltreger), Basic Math

Concepts for Game Developers (with Boris Meltreger), and Unreal Tournament

Game Programming for Teens (with Brandon Booth). John lives in the foothills

near Boulder, Colorado.

Martin J. Wells is currently the lead programmer at Tasman Studios Pty, Ltd,

located in Sydney, Australia. Throughout his 15-year career he has worked on a

wide variety of development projects. He is an expert in multiple computer

languages, including Java from its origins, and has extensive experience in the

development of high-performance networking and multithreaded systems. His

first game programming experience came fromwriting and selling his own games

for the Tandy and Commodore microcomputers at the age of 12.

About the Authors

About This Book . xv

PART I MOBILE DEVICE FUNDAMENTALS 1

Chapter 1 Java ME History . 3

Java’s Acorn . 3

Java’s Growth in the Sun. 5

What Is Java? . 7

Multiple Editions. 10

Mobile Information Devices Everywhere . 11

Micro Devices and Software . 12

Conclusion . 13

Chapter 2 Java ME Overview . 15

A Comprehensive Toolkit . 15

Java ME Architecture . 16

Configurations and Profiles . 17

The CDC . 20

The CLDC . 21

CLDC Target Device Characteristics. 22

CLDC Security Model . 22

Virtual Machine Security. 22

Application Security . 24

Application Management . 25

vi

Contents

Contents vii

Restrictions . 25

Finalization . 25

Error Handling . 26

Old and New Versions . 26

JVM Differences . 27

CLDC Packages and Class Libraries . 28

MIDP . 31

Target Hardware Environment . 32

Target Software Environment . 32

MIDP Packages and Class Libraries . 34

MIDP 2.0 Game Package . 36

MID Applications . 37

MID Run-Time Environment . 38

MID Suite Packaging . 38

Java Application Descriptors . 40

MIDP 2.0 and MIDP 1.0 . 42

Conclusion . 43

Chapter 3 Java ME-Enabled Devices . 45

MID Overview. 45

Nokia . 46

Series 30 . 46

Series 40 . 47

Series 60 . 50

Series 80 . 50

Series 90 . 52

Sony Ericsson . 53

K310 . 53

Sony Ericsson Z520 . 54

Motorola . 54

Motorola A830. 55

iDEN Phones . 56

Motorola E550 . 57

Conclusion . 57

PART II SET TING UP FOR DEVELOPMENT 59

Chapter 4 The JDK, the MIDP, and a MIDlet Suite 61

Getting the Tools . 61

Installing and Setting Up the JDK . 63

viii Contents

Obtaining the JDK . 63

Starting Your Windows JDK Installation 64

JDK Installation and Setup Continued . 65

Copying Path Information . 65

Setting the Path and CLASSPATH Variables 66

Testing Your Installation . 68

Installing and Setting Up the MIDP . 68

Copying the MIDP to a Directory . 69

Copying the Paths of the MIDP. 70

Setting the PATH and CLASSPATH Variables 72

Setting MIDP_HOME . 74

Verifying the MIDP Configuration. 74

Setting Up a Working Directory. 76

Creating a MIDlet . 77

Compiling Your Application . 79

Using Preverify with the Class File. 79

Running Your MIDlet . 80

Creating the Full Package . 80

Hello, Again. 81

Building the Class. 82

Creating the Manifest and JAR . 84

Creating the JAD . 86

Running the MIDlet Suite Package . 87

Modifying the JAD. 89

Conclusion . 90

Chapter 5 Using the Java Wireless Toolkit 2.5 91

Development Settings . 91

The Java Wireless Toolkit . 93

Installing the Toolkit . 93

The Basic WTK 2.5 . 97

Creating a New Project . 99

Creating the HelloToolkit Source Code 102

Building and Running HelloToolkit.java 106

Creating JAD, JAR, and Manifest Files 108

JWT Options . 109

Conclusion . 110

Chapter 6 Using NetBeans . 111

The NetBeans IDE . 111

Contents ix

Installing NetBeans. 113

Sanity Check the IDE . 116

Adding Mobility . 118

Downloading Mobility Packages . 119

Installing the CDC Mobility Package . 120

Installing the Basic Mobility Package 121

Confirming Mobile and CDC. 122

Creating a MIDlet Project . 124

Adding Code . 128

The JAD and JAR Files . 131

Adding the Message . 132

Changing the JAD File . 134

Conclusion . 136

PART III TEXT-ORIENTED ACTIVITIES . 137

Chapter 7 Java ME API Basics . 139

MIDP API Overview . 139

The MIDlet Class . 140

The LifecycleTest Class . 143

Imports and Construction . 146

Starting and Stopping . 148

Closing . 149

Command Actions . 149

Using Timer and TimerTask Objects . 150

The TimerTest Class . 152

Imports and Construction . 154

Canceling Tasks . 155

The Inner PrintTask Class . 155

Networking . 156

The Connector Class . 157

The HttpConnection Interface. 158

The NetworkingHTTPTest Class . 159

Conclusion . 163

Chapter 8 Persistence with the RMS . 165

Persistence . 165

The RecordStore Class. 166

The RecordStoreTest Class. 168

x Contents

Construction . 173

Adding Records . 175

Retrieving and Displaying Records . 176

Closing and Destroying . 177

Deleting Records . 178

Updating Records. 181

Record Enumerations and Record Stores 181

The RecEnumTest Class . 184

Vectors and Enumerations . 187

RecordStores and RecordEnumerations 189

Using a RecordComparator Object . 190

The ComparatorTest Class. 192

Use with the enumerateRecords() Method 196

Specializing the RecordComparator Interface 197

Using a RecordFilter Object . 198

The FilterTest Class . 198

FilterTest Construction . 203

Specializing the RecordFilter Interface 204

Using RecordListener Objects. 205

The RecordListenerTest Class. 206

RecordListenerTest Construction . 212

Assigning Records . 213

RecordListener Actions . 214

Specializing the RecordListener Interface 215

Exceptions . 216

Conclusion . 217

Chapter 9 User Interface Basics . 219

User Interface (LCDUI) . 219

Class Hierarchy . 221

Display and Displayable. 224

The DisplayTest Class . 226

Command and CommandListener . 229

TextBox . 232

Alert and AlertType . 234

The NameGameTest Class . 235

Construction and Definition . 238

The TextBox Cycle . 239

Alert Processing . 240

Contents xi

Lists . 242

Lists with Single Selection . 242

Construction and Definition . 247

Using a Vector Object for Data. 248

Processing Messages . 249

Lists with Multiple Selection . 251

Construction and Definition . 254

Processing Messages . 255

Conclusion . 257

PART IV USING GRAPHICS . 259

Chapter 10 Forms and Items . 261

General Features of the Item and Form Classes 261

The Form Class . 263

TextField. 265

Playing with Numbers . 266

Construction and Definition . 270

Processing Events . 272

StringItem. 275

The ItemPlayTest Class. 276

Definition and Construction . 280

Using the Bit OR Operator . 282

Font Definitions, Literal Strings, and Appending 283

Spacers and Implicit Appending . 285

Working with Events . 286

Conclusion . 290

Chapter 11 Images and Choices . 291

ChoiceGroup. 291

The ComedyChoiceGroup Class . 292

Class Definition . 298

Defining the Choice Group Object . 299

Processing Messages . 301

Formatting the Font and Displaying the Results 302

The Quotes Class . 303

Construction and Definition . 306

ImageItem and Image . 308

The ImageItemFind Class . 311

Construction and Definition . 317

Retrieving Images and Defining an ImageItem 318

Images as an Inner Class . 319

Conclusion . 321

Chapter 12 Gauges, Dates, Calendars . 323

Calendar and Date . 323

DateField . 326

The CalendarFortune Class. 326

Construction and Definition . 331

Using the Date and DateField Classes 333

Event Processing . 334

Generating Events from the Calendar 335

Prognostication . 336

Operations. 337

Gauge . 338

The SonnetMaker Class . 341

Construction and Definition . 345

CompositionTask . 346

Displaying the Lines . 347

Finishing the Display . 348

Sonnets . 349

Stop and Exit Messages . 350

Conclusion . 351

PART V GAME ORIENTATION . 353

Chapter 13 Canvas, Graphics, Thread . 355

Canvas . 355

CGExplorer . 356

Definition and Construction . 361

Specializing the Canvas Class . 361

Color . 362

Rectangles . 364

Strings . 365

Rendering the Image and Drawing an Arc 366

Translation. 368

Extended Canvas Work . 372

xii Contents

Contents xiii

GameStart . 374

Definition and Construction . 376

The Splash Screen . 377

GSCanvas . 378

GSCanvas Definition and Construction . 386

Files, Images, and Colors. 387

The Runnable Interface and the Thread 389

Key Values and Events . 391

Different Messages and Keys . 394

Painting and Repainting. 395

Boundaries, Coordinates, and Collisions 396

Conclusion . 398

Chapter 14 The Game API . 399

The Game API . 399

GameCanvas . 400

The Sprite Class and Frame Sequences 401

SpriteStart . 405

SpritePlay . 406

Definition and Construction . 414

The Frame Sequence . 415

Sprite and Image Creation . 417

TiledLayer . 419

Setting Cells. 422

Sprite Collisions and Setting and Transforming Images 424

TiledLayer Collisions . 425

Key Events . 427

Showing the Position of the Avatar Sprite 428

Clearing, Flushing, and Timing . 428

Parent Classes . 430

Conclusion . 430

Chapter 15 The Game API and Game Implementation 433

Diamond Dasher . 433

DasherStart . 435

DasherSprite . 436

Definition and Construction . 439

Diamond Production . 441

Positioning Diamonds. 442

xiv Contents

Collisions . 445

DasherCanvas . 446

Construction and Definition . 454

Starting the Game . 457

Running the Game. 459

Boundaries and Random Jumps . 459

Updating . 461

Showing the Final Score . 463

Conclusion . 463

Appendix Scrolling Background . 467

ScrollStart . 467

ScrollCanvas . 468

Definition and Construction . 470

Index . 475

This book provides an introduction to programming with Java MIDP classes. It

is not intended to fully explore all the potential theMIDP classes offer, nor does it

offer a comprehensive view of Java programming. Instead, it provides an

introduction to the interfaces provided by the MIDP that allow you to extend

your knowledge if you already possess a basic knowledge of how to program with

Java.

The first chapters introduce you to the history of the MIDP and its associated

technologies. In this respect, it is assumed that you have had no previous

exposure to device programming. From there, you move on to set up environ-

ments that allow you to get started. You work wholly on a PC, and instructions

are provided on how to set up all the tools you need to write programs that make

use of theMIDP classes. This book should prove a trusty ally if you have hesitated

to explore device programming because it seems to necessitate learning entirely

new development techniques or accustoming yourself to new programming

environments. Every attempt is made to make the transition into device pro-

gramming as painless as possible. Among other things, comprehensive instruc-

tions are provided concerning how to set up both the appropriate Java packages

and the NetBeans IDE on your PC. No other book on themarket provides a more

comprehensive treatment of the basics of setting yourself up for developing

device programs.

About This Book

xv

Who Should Read This Book

This book addresses people who have a background in Java programming at a

beginning or intermediate level. It is not a good idea to turn to this book if you

want to learn how to program. For help in that regard, Java Programming for the

Absolute Beginner (by the same author) provides a suitable foundation for pro-

gramming at the level required by this book.

This book helps you transition into using Java to program for devices. If you

possess a basic understanding of how to program with Java and are seeking a way

to extend your knowledge into the realm of cell phones and other mobile devices,

then this is the book you want. One of its greatest strengths is that during its early

chapters, in addition to helping you understand what mobile devices and mobile

device programming involve, it also closely guides you through the somewhat

esoteric activities of acquiring (free of charge) the software needed to begin

developing programs for mobile devices.

The author enjoys friendships with many professional programmers who have

never attempted to program for devices because they have dreaded having to

learn about and acquire the equipment necessary to begin doing so. This book

attempts to remedy such situations. The equipment needed is freely available and

can be readily installed in a very short time. All of the work with JAR and JAD

files can be automated. The Java Wireless Toolkit provides an attractive, fun

testing environment. The NetBeans IDE provides a free, robust, and increasingly

powerful IDE for use in developing using the Java libraries that address mobile

devices.

The Chapters

Chapter 1 provides a topical review of the history of Java as related to pro-

gramming mobile devices. It provides you with a quick summary of the tools you

use for developing mobile applications and some of the more promising settings

in which to pursue such a line of work.

Chapter 2 furnishes a discussion of the Mobile Information Device Profile

(MIDP) and how it forms the foundation of your work using Java to develop

programs for phones. It also acquaints you with the notion of a MIDlet (as

opposed to an applet). You learn, for example, that at the basis of every Java

program you write for a mobile device is an extension of the Java MIDlet class.

xvi About This Book

Chapter 3 offers a brief overview of some of the devices for which MIDlets can be

written. The devices covered constitute an extremely scant survey of the field.

Still, references to Internet sites providing comprehensive information on

hundreds of possible target devices are provided. No book could possibly hope to

provide a comprehensive view of this topic—even the websites are overwhelmed.

With Chapter 4, the work begins. From the first page or two, you are at the

keyboard installing and tuning Java, and then using the MIDP to build a MIDlet

from scratch. You work at the command line and do everything from scratch. In

the end, however, you have the pleasure of seeing a MIDlet compile.

Chapter 5 is all about the Java Wireless Toolkit. It shows you where to acquire it

and how to use it. Prior to this chapter, you have been working at the command

line only, but now you have a chance to augment your activities by using the Java

Wireless Toolkit. Learning to use it is a stepping-stone to more powerful tools.

Since this book’s goal is to make you as productive as possible as quickly as

possible, in Chapter 6 you learn how to acquire and install the NetBeans IDE and

the components associated with it that allow you to develop MIDlet and other

Java programs directed toward devices. While it is not by any means suggested

that you skip any of the first four chapters, to gain a sense of where the fun begins,

Chapter 6 is the place to go.

Chapter 7 works you into some of the most fundamental topics of theMIDP class

library. Among other things, you explore the MIDlet class and delve into the

Timer and TimerTask classes. Work with these classes anticipates work with the

Runnable interface later in the book.

Chapter 8 concerns persistence and the RMS package. The Java MIDP classes

provide a set of classes that allow you to store and retrieve data in a complex,

robust way. While this is not a database, it does provide a secure way of storing

and accessing data placed in a special reserved location in the memory of the

device. Chapter 8 also introduces you to some of the classes used for networking.

Chapter 9 provides an introduction to the graphical user interface components

offered by the MIDP packages. You can begin seeing the device display different

types of applications, at this point textually oriented. In this regard, you con-

centrate on such classes as Display, TextBox, and List.

Chapter 10 takes you into the world of the Form and Item classes. This provides

interesting contexts in which to work with such classes as TextField and

About This Book xvii

StringItem. As the number of components you work with increases, the MIDlets

you work with become more involved.

Chapter 11 provides a transition. You work with the ChoiceGroup, ImageItem, and

Image classes. The MIDlet you develop provides pictures of famous comedians

and some of their favorite jokes.

Chapter 12 involves you in work on such classes as DateField and Gauge. It also

extends work you have done previously with the Image, Form, and Item classes.

In Chapter 13, you work extensively with the Canvas and Graphics class, devel-

oping MIDlets that show you the fundamentals of game architecture using the

standard GUI classes of the MIDP. What you do in this context provides a solid

grounding for working with the Game API.

With Chapter 14, you work exclusively with such classes as Sprite, TiledLayer,

and GameCanvas. You explore a MIDlet that allows you to see most of the func-

tionality involved in a basic game. This includes understanding how tiles and

frame sets work.

Chapter 15 provides you with a basic game that employs the Sprite, TiledLayer,

GameCanvas, and LayerManager classes in the implementation of a game that

explores collision detection, scoring, use of Thread, Timer, and TimerTask objects,

and other features common in the development of games.

In the appendix, you’ll find an extended discussion of how to implement a

scrolling background. The information here applies as readily to scrolling in the

foreground. Use of the LayerManager allows you to pursue a number of scenarios.

Obtaining the Code for the Book

It is essential to be able to work with the projects the book offers if you are to

benefit from reading the book. In this respect, there are two ways to obtain the

source code:

n From the CD. The CD that accompanies the book provides the most

convenient way to acquire the source code. Just install it as directed.

The source code for each chapter is in a separate chapter file, and

throughout the book, the location of each source file is clearly described. To

access the code from the CD, just insert it in your computer’s CD drive

and access the code folder. The CD should automatically start. If it does not,

you can click the start.exe file on the CD.

xviii About This Book

n From the Internet Site. To obtain the code from the publisher’s website,

access www.courseptr.com/downloads and enter the title of the book. You

can access a link to the source code and any resources associated the book

that might be made available after the book’s publication.

Setting Up Files

Instructions on how to compile files are provided in Chapters 4 through 6.

Generally, if you follow the examples in the book, you should find working with

the files fairly easy. If you can install and use the NetBeans IDE (instructions are

provided), you will get the most out of this book.

How to Use This Book

Start with Chapter 1 and work forward from there. It is suggested that you work

through Chapters 4, 5, and 6, and pay close attention to the details they intro-

duce. Unless you establish a comfortable, reliable work setting, there is little hope

that you are going to enjoy programming for devices. Take time to set up and

familiarize yourself with the tools this book introduces. You can then move on

from there.

Conventions

No conventions to speak of have been consciously adopted in the writing of this

book. Generally, the coding style is based lightly on the ‘‘Java Style’’ that has been

popular for several years now, but formatting the code so that it can be included

in the book has often meant that decisions have been made to try to reduce the

number of blank lines. Also, a general practice has been followed of removing

comments from the code and placing them in the body of the text. In this regard,

a system using a pound sign and a number has replaced the practice of referring

to code by its line number. In this book, you see numbers placed at certain

locations in the programs. Reference is then made to these numbers.

About This Book xix

www.courseptr.com/downloads

This page intentionally left blank

Mobile Device
Fundamentals

This page intentionally left blank

Java ME History

A mobile information device (MID) is usually understood to be a computer that

you can hold in your hand. Such devices are familiar in the world today as cell

phones, iPods, iPhones, and BlackBerries. All such devices have their own

operating system, but at the same time, they are developed according to stan-

dards that international organizations and corporations have established. Java is

a popular language for programming such devices because Java runs on a virtual

machine. Sun can create a virtual machine for almost any device, and for this

reason, Java has become the premier language for mobile information device

programming. For those unfamiliar with Java and mobile information device

programming, this chapter provides a few introductory notes. It is not intended

as a comprehensive introduction to the topic, but it presents a brief outline of the

history of the Java programming language and related technologies. It also dis-

cusses the capabilities and limitations of mobile phones.

Java’s Acorn
In early 1995, Sun Microsystems released an alpha version of a new software

environment called Java. During the first six months after Java’s release, many

people in the software development industry spent their time exchanging bad jokes

and puns about coffee beans and Indonesian islands. It didn’t take long, however,

for the slogan of ‘‘Write Once, Run Anywhere’’ to supplant the jokes and puns.

Java was taken up by thousands of developers, and Java began its march to the top.

3

The earliest traces of Java go back to the early 1990s, when Sun formed a special

technical team (known as the Green Team) tasked with developing the next wave

of computing. After an 18-month development effort, the team emerged with the

result: a handheld home-entertainment device controller with a touchscreen

interface known as the *7 (Star Seven). Figure 1.1 shows *7.

The real action, however, was not with the *7 or the device running it; it was with

the backend technology that powered it. One of the requirements of the project

was a robust, hardware-independent, embedded software environment that

facilitated low-cost development.

At this point, James Gosling entered the picture. Gosling, a Canadian software

engineer working with the Green Team, was the primary designer of Java. He

began to develop the basics of Java by using some of the best elements of Cþþ,

such as its general syntax features and object-orientation. He excluded such

things as memory management, pointers, and multiple inheritance. Gosling

endeavored to create a simple, elegant language that developers could use to

quickly deploy applications.

Gosling’s first version of Java, called Oak, ran on the *7 device and featured the

familiar Java mascot Duke. Oak’s power wasn’t only in its language design; there

were plenty of other object-oriented languages. Oak blossomed because it

encompassed everything. Gosling did not create a language and then let other

4 Chapter 1 n Java ME History

Figure 1.1
Java had its origins with the *7 device developed by Sun.

people implement it as they saw fit. The goal of Oak was hardware independence,

and with that in mind he created a complete software deployment environment.

From virtual computers to functional application programming interfaces

(APIs), Oak provided—and, more importantly, controlled—everything.

Unfortunately, the *7 did not last long. The notion of running programs on a

fixed device (and devices in this respect ranged from toasters to garage door

openers) was promising but not what was really needed. What was really needed

was something that went worldwide during themid-1990s: the Internet. With the

help of developers such as Bill Joy, Wayne Rosing, John Gage, Eric Schmidt, and

Patrick Naughton, Gosling was able to make Java a core programming language

for the Internet.

The Internet emerged as the predominant technology of the day. Browsers could

be used to transfer and display digital content in the form of pictures, text, and

even audio almost universally on a variety of hardware. Servers could link mil-

lions of Internet users. Java proved ideal as a programming language that could

accommodate the needs of both browsers and servers.

The goals of the web were not dissimilar to that of Oak: provide a system to let

you write content once, but view it anywhere (running on a variety of operating

systems). Oak was designed to allow programmers to develop on different

devices. Programs running on servers or applications running in browsers

amounted to the same thing. The Internet became the framework within which

Oak software could be distributed and universally deployed.

Java’s Growth in the Sun
Given the match between the needs of the Internet and the design of Oak, the

mission and description of Java soon emerged fromOak. Gosling and the team at

Sun developed a host of technologies around the concept of a universally

deployable language and platform. One of their first tasks was to develop the

Java-compatible browser known as HotJava. (The early versions were named

WebRunner, after the movie Blade Runner.) Figure 1.2 shows the original

HotJava browser.

If Sun sought to dominate the Internet through HotJava and distribute Java in

that way, something even better soon arose. On May 23, 1995, the Netscape

Corporation agreed to integrate Java into its popular Navigator web browser,

thus creating an unprecedented audience for the Java software.

Java’s Growth in the Sun 5

6 Chapter 1 n Java ME History

Figure 1.2
Sun developed a browser named HotJava, shown here displaying the original Java home page.

Soon programmers from all over the globe flooded the Java website to download

the new platform. Sun completely underestimated the platform’s popularity and

struggled to increase bandwidth to cope with the rush. Java had arrived.

Development of the Java platform has continued ever since. As the years have

passed, it has been expanded to include a number of technologies, such as JSP

and XML. Interface components have been rewritten as Swing. The overall

platform has been expanded to meet database and security needs. Each new

release brings new supporting technology.

Despite Java’s complexity, one of its great attractions continues to be Gosling’s

original design. The syntax remains elegant, the development effort proves much

easier than it is in many other languages, and the work of documenting and

debugging is much more straightforward.

What Is Java?
Java is an object-oriented programming language that you compile to byte code

that runs on a virtual machine. In this respect, it differs from traditional pro-

gramming languages such as C. The C programming language remains a strong

foundation language, but it is also a procedural programming language (based

on functions). Cþþ is the object-oriented precursor of Java, but to develop with

Cþþ, programmers compile their code directly to a specific operating system.

(Microsoft has changed this picture with managed Cþþ.)

ANSI-compliant Cþþmakes it possible to port code from one operating system

to another with relative ease, but programs still must be recompiled as you move

them from operating system to operating system. With Java, programmers can

either compile or interpret code. As Figure 1.3 illustrates, the initial compile

phase translates your source code (*.java files) into an intermediate language

called Java bytecode (*.class files). The resulting bytecode is then ready to be

executed (interpreted) within a special virtual computer known as the Java

Virtual Machine (JVM).

The JVM is a simulated computer that executes bytecode instructions. It acts as a

consistent layer between bytecode and the actual machine instructions. Bytecode

instructions are translated into machine-specific instructions by the JVM at

runtime. This enables programmers to write one program and run it on different

operating systems without having to engage in extensive rewriting (porting)

work.

What Is Java? 7

The expression often used to sum up the work of the JVM is ‘‘Write once, run

anywhere.’’ As Figure 1.4 illustrates, the target platform for a Java program

requires only a JVM. Sun provides a JVM specific to each platform (or operating

system), and after the JVM is installed, the Java program can run in it regardless

of which environment it was developed in.

8 Chapter 1 n Java ME History

Figure 1.3
Java code goes through two stages: compilation and interpretation.

Figure 1.4
Java bytecode becomes a portable program executable on any Java Virtual Machine.

Running a Java program remains elementary. Developing a Java program

involves a bit more activity. You need more than just a programming language;

you need a programming platform. The Java platform is made up of three

significant components:

n The Java Development Kit

n The Java Virtual Machine

n The Java Application Programming Interface

The Java Development Kit (JDK) is the general name for the entire suite of tools

that allows you to develop with Java. Central to this are the compiler and its

associated tools. As mentioned previously, the role of the JVM is to provide an

interface to the operating system of the underlying device. The Java API provides

a limited view of the operating system to the Java program. This makes the JVM

the judge, jury, and executor of program code.

The Java API is a collection of Java classes covering a vast range of functionality

including containers, data management, communications, IO, and security.

There are close to a thousand basic classes available as part of the Java API.

Secondary developers provide thousands more that extend and specialize the

API.

J a v a v e r s u s Cþþ
An important bond exists between C/Cþþ and Java. C is the parent language of both Cþþ and
Java. James Gosling implemented the initial versions of Java using Cþþ, but he also took the
opportunity presented by Java’s unique language model to modify its structure and make it more
programmer-friendly than Cþþ.

One major innovation relates to memory management. In practical terms, Java prevents you from
going into an operating system and telling it to reserve or in other ways use the memory of a
specific machine. Java was designed to do this because memory management is one of the
activities that most tends to anchor a program to specific operating systems. Java provides an
additional advantage with respect to Internet applications: executables created with Java preserve
the integrity of the operating system on which they run. To put it differently, when you develop a
program for a browser, for example, with Java you can be confident that if a given Internet user
opens a Java applet, the applet is not going to violate the security of the user’s system.

One major activity of memory management involves setting aside (allocating) memory used by the
program. An object-oriented program often performs this memory-management task by creating a
program component known as an object (an instance of a class). In Java, for example, the
JDialog or JFrame classes allow you to create dialogs and windows. When such objects are
created, they can bog down the performance of a computer if they are not also destroyed when

What Is Java? 9

they are no longer in use. Java takes care of such activity through what is generally known as
automated cleanup or garbage collecting. When an object falls into disuse, Java cleans it up for
you. You do not have to count and manage objects, as you do with Cþþ.

Java also differs from Cþþ along the following lines:

n There is no preprocessing of source files in Java.
n In Java there is no split between the interface or header (.h) and the implementation (.cpp) file;

there is only one source file (.java).
n Everything in Java is an object in the form of a class. In Cþþ, you can revert to C and start

writing code that does not involve classes, even to the point of creating global variables. In
Java, you cannot define global variables (values that exist outside a class).

n Java has no autocasting of types; you have to be explicit.
n Java has a simplified object model and patterns; there is no support for multiple inheritance,

templates, or operator overloading.

For general application development, Java has far outdistanced Cþþ as the preferred language.
However, Cþþ still commands a strong position as a server-side programming language and in
the world of console game development. Cþþ programs execute much faster than Java pro-
grams, and Cþþ also provides programmers control over execution and memory. Such capa-
bilities prove useful in some game-development contexts or contexts in which optimized
performance is essential. Still, Java applications developed for general enterprise prevail. Java
programs often perform better, have fewer bugs, and prove easier to develop and maintain.
Moreover, there is no comprehensively unified enterprise or mobile development environment in
Cþþ. In this respect, the J2EE platform is the world’s standard for development of end-to-end
enterprise information systems.

Multiple Editions
The Java language has evolved over the years. The first major edition, now known

as the Java 2 Standard Edition (J2SE) was aimed at the development of GUIs,

applets, and other standalone applications. A few years ago Sun expanded the

Java suite with the Java 2 Enterprise Edition (J2EE), which was built for use in

server-side development. This version included expanded tools for database

access, messaging, content rendering, inter-process communications, and

transaction control.

Sun didn’t stop there, though. Desperate to satisfy every programmer on the

planet, Sun set its sights on handheld or portable devices. The version of Java

Sun designed for these devices is designated Java 2 Micro Edition (J2ME). The

current version of Java has been incremented beyond the first release, so Sun

often refers to it simply as Java ME.

10 Chapter 1 n Java ME History

Mobile Information Devices Everywhere
Mobile information devices are generally small enough to carry in your pocket or

purse. The most popular such devices are cell phones, iPods, and iPhones. Sun

manufactures special versions of its Java virtual machine to allow your Java

programs to execute on such devices. Since such devices are available in every

description, the virtual machine approach to application deployment enjoys the

same advantage with MIDs that it enjoys with the Internet. You can write an

application on one operating system and deploy it to many others.

The purpose of portable Java programs is often to provide an interface for the

user. Device manufacturers create operating systems that manage such things as

games, telecommunications, or music. The user of such devices browses the

Internet, answers a phone call, receives a text message, manages and selects tunes,

or plays games. The games you find on such devices are often fairly basic, but

with each new day, as the memory, speed, and virtual machine profiles of the

devices improve, the software built to run on them increases in complexity.

Applications once considered too large for portable devices are now becoming

common features of them. What is significant about this is the sheer magnitude of

the market calling for this transformation. Cell phone manufacturers deal with a

market that includes billions of possible users. Cell phones are so inexpensive that

they are often given away as part of a telecommunications package. The device

becomes trivial. The interface and services become much more significant. What

applies to cell phones applies in general to all mobile devices. As the hardware

decreases in significance, the software and services become more important.

It is generally not at all unreasonable to imagine a world (of over six billion

people to date) in which everyone from childhood on is equipped with one or

two portable devices. Picture a cell phone and an iPod to start with. In time these

might be merged into a single device (like the BlackBerry or iPhone), but the

general market for applications to run on such devices remains the same.

As a slight digression, it is important to remember that mobile devices often have

very specific and somewhat humble market niches. Consider, for example, a

device that is responsible for monitoring the output of a microtransmitter

embedded in an automobile tire. By pressing a few buttons, a mechanic can see

the tread depth and tire pressure of the tire. This basic information is then fed to

a PC with an Internet connection. Someone in a back office can then monitor the

status of the tire. This technology can be extended to the shoes of runners in a

marathon. If a transmitter is clipped to each running shoe, as runners run by

Mobile Information Devices Everywhere 11

given auditing points, their names and times can be fed into a central database

and displayed on a website. All the applications involved might be developed

with Java. All involve MID development.

Micro Devices and Software
MIDs are often referred to as micro devices. As you will see in Chapter 2, the

support for such micro devices broadens as different devices come into the

picture. Figure 1.5 shows several categories of micro devices.

Generally, large corporations can afford (at least to an extent) to create and

deploy proprietary development platforms for the devices they produce. In most

cases, Java ME provides you with the ability to make use of some of the features

of the proprietary development platforms. To use some of these development

platforms, you must pay a license fee. In other cases, you can obtain the software

for free, but you must integrate software modules with your Java code.

Over the past two decades, micro-device manufacturers have provided pro-

grammers and other content creators with various sets of tools to build software

applications. This approach to development has met with greater and lesser

degrees of success. Generally, the trend now favors open approaches like Java,

12 Chapter 1 n Java ME History

Figure 1.5
The broad categories of micro devices.

and almost every major device manufacturer has made a strong effort to

incorporate Java ME. The tendency in this respect is toward standardization of

hardware and software. Device manufacturers realize that their surest path to the

broadest market is through the interoperability Java provides. Table 1.1 lists

some of the categories into which proprietary efforts have fallen.

Conclusion
With millions of programmers and worldwide distribution, Java is an enor-

mously popular development platform. As a language, it is easy to learn. Given

the extraordinary store of libraries and other supplements that exist for Java,

mastery of it is probably no longer a possibility for any lone individual. Still, if

you can learn how to work with the basic development environment, whether it

is the general JDK or a specialized version of the JDK such as Java ME, you are

probably on your way to a lifetime of work.

Developing software for portable devices is one of the key areas of development

for Java programmers. The programs they produce often center on user inter-

faces, which vary according to the device on which the interface is deployed and

the market the device manufacturer or service provider targets. One of Java’s

strengths is that it allows developers to provide software that is both portable and

safe for deployment on different devices.

Conclusion 13

Table 1.1 Non-Java Development Tools

Tool Description

Manufacturer SDK The most common development platform initially was device-manufacturer SDKs
(software development kits) or operating system (such as Palm, Windows CE, and
EPOC/Psion) SDKs. In most cases, developers used C/Cþþ.

WAP/WML WAP (wireless application protocol), a standard communications protocol used in
mobile devices, is used in a similar way to HTTP and TCP. An early Internet system
developed by mobile phone operators used WAP as transport for WML (wireless
markup language), which serves as a replacement for the more complex HTML
(hypertext markup language) used by web browsers. Unfortunately, the end result
was nothing like the ‘‘mobile Internet’’ promised by promoters.

Web/HTML Available only to the higher-level devices, the web was sometimes used as a
content delivery tool. Content was usually cosmetically modified to suit the
characteristics of micro devices.

Other Middleware Many vendors have also tried to create content-creation middleware and tools
such as iMode and BREW, with varying degrees of success.

This page intentionally left blank

Java ME Overview

In this chapter, you explore the role of Java ME’s configurations and profiles.

Toward this end, you explore the Connected Limited Device Configuration

(CLDC) and the Mobile Information Device Profile (MIDP). These comple-

mentary components of the Java ME form the basis of much of what you do to

develop software for mobile information devices (MIDs). In this book, your

development efforts begin with the CLDC 1.1 and the MIDP 2.0, but it remains

that the applications you develop are largely backward compatible with the

CLDC 1.0 and the MIDP 1.0. Using the older, simpler functionality gives you a

simpler, clearer view of what you can do with the current technology. In addition

to investigating features of the CLDC and the MIDP, you also look at a few

practical concerns, such as how JAR and JAD files work in relation to mobile

information device applications and suites of such applications. Such preli-

minaries provide the groundwork for efforts in chapters that follow.

A Comprehensive Toolkit
MID programming constitutes one of the most dynamic branches of today’s

software industry. The number of portable devices requiring software develop-

ment increases daily. As a developer, you have to cope with this proliferation of

devices and the broad range of functionality that characterizes the mobile

application market. You also face different software development kits (SDKs)

15

provided by the companies that create the hardware for the devices. Developing

software for multiple versions of a given device is hard work; creating it for

completely different devices is even harder.

Writing the software isn’t the only problem. Delivering it to the device requires a

platform capable of installing new software on demand, along with the channels

to receive new code. Further, after installation, you must consider security issues.

Although it cannot be said to make the work simple, Java ME renders such work

fairly straightforward. Among other things, it provides you with a comprehensive

set of tools that allows you to domost of the work required to develop and deploy

device-oriented software. While the tools you use reside in different areas of the

Java development platform, they all work together to let you work in a fairly

seamless way.

Java ME Architecture

As was noted in Chapter 1, Sun creates different versions of Java to suit different

development environments. From the enterprise development tools designed for

use in servers to those that address mobile systems, each version has its own place

in the Java landscape.

It’s important to note that the division between platforms can become blurry.

Java ME development sometimes requires the use of different platforms. For

example, when you’re developing a multiplayer game, you use Java ME for the

client-side device software, but you also benefit from the power of J2SE and J2EE

when you implement the backend server systems.

As Figure 2.1 shows, the various editions of Java suit distinctly different devel-

opment settings. The three virtual machines overlap but apply to different areas

of development. The Java HotSpot VM is the most comprehensive virtual

machine supplied by Sun. It incorporates the full-scale version of Java. The

Compact Virtual Machine (CVM) and Kilobyte Virtual Machine (KVM) are

smaller virtual machine implementations designed to run within the constraints

of the limited resources available on micro devices.

When Sun developed the Java ME, it was obvious that the larger version of the

VM needed to be reduced in size to fit onto mobile information devices. While

the power and memory of chips have increased tremendously since then and

might conceivably accommodate a large VM, much that the J2SE offers is not

needed in even a complex mobile information device.

16 Chapter 2 n Java ME Overview

The designers of Java ME came up with a solution based on a revised Java

architecture that excludes specific platform components, including components

that address such areas as language, tools, the JVM, and the API. On the other

hand, certain components are added. Among these are components that address

features of specific devices.

Configurations and Profiles

A configuration defines the capabilities of a Java platform designed for use on a

series of hardware devices. A configuration begins with conceptual overview of

the services that a given type of device requires. Such services represent a subset

of the overall set of services that the Java VMmight provide. Among other things,

a given J2SE configuration might require removing or adding architectural

features along the following lines:

n Language components that are unlikely to be used to develop software that

runs on devices.

A Comprehensive Toolkit 17

Figure 2.1
The different editions of Java suit different hardware platforms.

n Specific types of functionality that address hardware requirements for

mobile information devices, such as the memory, screen size, and processor

power for the family of devices.

n Java libraries that can be included or excluded arbitrarily during

development.

Given such considerations, Sun created two initial configurations to suit the

mobile information world. One, the Connected Device Configuration (CDC),

addresses slightly limited devices, such as personal digital assistants (PDAs) and

set-top boxes (digital TV receivers, for example). The other, known as the

Connected Limited Device Configuration (CLDC), addresses general classes of

devices, such as pagers and mobile phones.

In this book, you work with both of these configurations, but the emphasis at the

start is on phones, so you work primarily with the CLDC configuration. The two

are interrelated, of course. The important thing right now is that these config-

urations let you move forward, confident of the functionality of the underlying

target platform. In most cases, you develop for at most a few platforms, not a few

hundred.

Configurations define categories of devices and the services provided to them.

They merely limit Java to a suitable target platform’s capabilities. In other words,

they limit the number of classes you work with and orient your development

efforts toward the functionality required for a given range of devices.

A profile is a description of a given type of device. The profile of a given device

makes it a phone, for example, or a PDA. To a great extent the profile determines

the API you can use with a device. Youmight be working with a 2D or a 3D game,

for example.

With respect to the API, a central focus of the profile is the user interface (UI)

for mobile phones (see Figure 2.2). The CLDC that covers this type of device

excludes many of the classes you find in Java UI libraries, the Abstract Windows

Toolkit (AWT), and Swing. Consider, for example, that since the screens of

most MIDs are small, you are not in a position to develop software with

extensive display and menu options. There is little point in providing a

profile that includes classes that support features the MID cannot include. The

profile that has been developed provides a UI suited to the specific require-

ments of the MID’s LCD screen. The resulting LCD UI is included in the CLDC

profile that targets MIDs. This is generally known as the Mobile Information

18 Chapter 2 n Java ME Overview

Device Profile (MIDP). In this book, you deal largely with the MIDP 2.0.

However, most of the code in this book is backward compatible with the

MIDP 1.0.

As Chapter 7 reveals, the LCD UI implementation shown in Figure 2.2 exemplifies

the role that profiles play in adding device-category-specific functionality. The

keyboard and screen shown have limited dimensions and display characteristics.

When a profile presents such features, the components in the API can be limited,

and the development activities you perform can be streamlined.

Figure 2.3 shows how the functionality of a game that runs on a phone depends

on a device profile (which can be understood as a set of UI classes), a config-

uration (a range of devices and services addressed by Java), and the capabilities of

the Java VM. At the bottom is the operating system of the device. The Java VM

A Comprehensive Toolkit 19

Figure 2.2
Configuration and profile provide the context in which you create applications for MIDs.

interfaces with the configuration, which in turn provides functionality to the

profile and application layers.

The CDC
The Connected Device Configuration (CDC) can be viewed as the generalized set

of Java ME configurations. It addresses almost any device you care to name for

about any application you wish to develop. The CDC addresses smaller devices,

such as phones, and larger devices, such as digital TV set-top boxes and PDAs. It

contains a single profile (the Foundation profile) and the high-performance

Compact Virtual Machine (CVM). The Java language implementation and the

API for the CDC have largely the same capabilities as the J2SE.

Because the CDC provides more capabilities than are needed for most mobile

phones, Sun provides the Connected Limited Device Configuration (CLDC). In

this book, you use the CLDC (1.1) for the programs you create. This config-

uration enables you to work with a smaller, more convenient version of Java as

you develop applications for MIDs.

20 Chapter 2 n Java ME Overview

Figure 2.3
Java ME consists of layers of components.

The CLDC 21

The CLDC
The Connected Limited Device Configuration (CLDC) provides a definition of

devices that includes mobile phones and many other devices. Its scope is much

broader than the Mobile Information Device Profile (MIDP). To use it, you

download a separate configuration package from Sun. (Chapter 6 briefly dis-

cusses the CLDC package with respect to the NetBeans.) Over the past few years,

different versions of the CLDC have emerged. This book uses version 1.1.

Versions represent the findings of conventions or consortiums of companies that

are involved in the Java Community Process (JCP). The JCP provides a formal

context in which developers in a given community can submit recommendations

concerning standardized platform features. These are known as Java Specifica-

tion Requests (JSRs). Each collection of requests is identified with a number. The

Java Community Process’s complete list of JSRs is available online at http://

jcp.org/en/jsr/all.

For the CLDC 1.1, JSR 139 is central. If you click on the link for JSR 139, under

Section 2.0, you see discussion that includes the following topics:

n Target device characteristics

n The security model

n Application management

n Language differences

n JVM differences

n Included class libraries

C LDC S p e c i f i c a t i o n

The JSR for any given version of a CLDC involves contributions from a multitude of companies involved
in the mobile device industry. As an example, consider the Java Community Process participants
responsible for the development of the JSR for the CLDC 1.0. Table 2.1 provides a partial list.

Table 2.1 CLDC Specification Contributors

America Online Bull Ericsson

Fujitsu Matsushita Mitsubishi

Motorola Nokia NTT DoCoMo

Oracle Palm Computing RIM (Research In Motion)

Samsung Sharp Siemens

Sony Sun Microsystems Symbian

http://jcp.org/en/jsr/all
http://jcp.org/en/jsr/all

CLDC Target Device Characteristics
The CLDC provides a description of the characteristics of a supported device.

Each version of the CLDC changes this description to accommodate increased

device capabilities or new technologies. Table 2.2 lists target device char-

acteristics as defined by the CLDC 1.0 specification. These have been extended

to the CLDC 1.1.

No t e

One thing you might notice right away is that the characteristics of the CLDC don’t mention any
input methods or screen requirements. That’s the job of a particular device profile, which in this
book centers on the Mobile Information Device Profile (MIDP). A configuration offers only the core
Java system requirements.

CLDC Security Model
J2SE’s existing security system was too large to fit within the constraints of the

CLDC target platform. A revised model eliminates many of the features but

requires far fewer resources. There are two main sections to the CLDC security

model. The first involves virtual machine security; the second involves applica-

tion security. The security model for the CLDC lays some important groundwork

for application execution models discussed later in this book.

Virtual Machine Security

The goal of the virtual machine security layer is to protect the underlying device

from damage executable code might cause. Under normal circumstances, a

22 Chapter 2 n Java ME Overview

Table 2.2 CLDC Target Platform Characteristics*

Characteristic Description

Memory 160 KB to 512 KB devoted to the Java platform (minimum 128K available to a Java
application)

Processor 16-bit or 32-bit

Connectivity Some form of connectivity, likely wireless and intermittent

Other Low power consumption, typically powered by battery

*For more information, see http://java.sun.com/products/cldc/faqs.html.

http://java.sun.com/products/cldc/faqs.html

bytecode verification process carried out prior to code execution takes care of

this. This verification process validates class-file bytecode, ensuring that it is

correct for execution. The most important result of this process is the protection

it offers against the execution of invalid instructions and the creation of scenarios

in which memory outside the Java environment is corrupted.

The standard bytecode verification process used with J2SE requires about 50 KB

of code space, along with up to 100 KB of heap. While this is negligible on larger

systems, it can constitute a sizable portion of the memory available to Java on

many micro devices.

The resulting verification implementation within the virtual machine of the

CLDC requires around 10 KB of binary code space and as little as 100 bytes of

run-time memory.

The reduction in available resources essentially comes from the removal of the

iterative dataflow algorithm from the in-memory verification process. The price

of the reduction is an additional step known as pre-verification that must be

undertaken to prepare code for execution on the JVM. The pre-verification

process inserts additional attributes into the class file.

No t e

Even after undergoing the process of pre-verification, a transformed class file is still valid Java
bytecode; the verifier automatically ignores the extra data. The only noticeable difference is that
the resulting files are approximately five percent larger.

A tool supplied with the Java ME development environment carries out the

process of pre-verification. It’s all rather painless. As Figure 2.4 illustrates, the

CLDC Security Model 23

Figure 2.4
A pre-verification process reduces the resources used for the typical class-file verification.

important point is that the resource-intensive part of the verification process is

carried out on your (overpowered) development PC (the build server).

No t e

Post-verified class files are commonly called pclasses.

Application Security

The class-loader verification process discussed previously is pretty limited.

Basically, it just confirms that bytecode is the legitimate result of the Java

compilation process. Although this is helpful, a further level of security is

required to protect a device’s resources.

The full J2SE security model is too large for the devices addressed by the CLDC.

For this reason, the CLDC incorporates a simplified security model based on the

concept of a sandbox: your Java code can play (operate) only within the confines of

a small, controlled environment. Anything outside is completely out of bounds.

No t e

If you’ve done any applet development (applets are Java programs executed inside a web browser),
you’re already familiar with the concept of sandbox security. The CLCD implementation is similar.

As Figure 2.5 reveals, your code restricts what’s available in the sandbox envi-

ronment. The CLDC defines a list of exactly what you can execute, and that’s all

24 Chapter 2 n Java ME Overview

Figure 2.5
The Java sandbox security model provides access to core classes while protecting the underlying device.

you get. Protection is also in place so you can’t change the base classes that make

up the installed API on the device—the core classes. The CLDC specifications

mandate protection for these classes.

Application Management
Managing applications on mobile information devices is different from managing

applications on PCs. When you work onMIDs, quite often there is no concept of

a file system, let alone a file browser. Most of the time, especially on typical MIDs,

users have a limited amount of application space in which to store programs. To

manage these applications, the device should provide a basic ability to review the

installed applications, to launch an application, and to delete an application if the

user so desires.

While the CLDC doesn’t mandate the form the application manager should take,

the capabilities it fosters imply that typical implementations of device software

should furnish simple menu-based tools to browse and launch programs.

Restrictions
Fairly significant differences exist between the standard J2SE version of Java and

the version you use when programming for micro devices. The differences relate

only to limitations, not to changes in syntax. The primary areas involve final-

ization and error handling.

Finalization

To improve performance and reduce the overall requirements, the CLDC leaves

out automatic object finalization. If you have a background in Java, you know

that this means that the CLDC does not provide an Object.finalize method.

When using the J2SE under normal circumstances, the garbage collector process

calls this method for an object it is about to discard from memory. You can then

free any open resources that explicitly require you to do so (such as open files).

The lack of an Object.finalize method doesn’t mean the garbage collector

doesn’t run. It’s just that the garbage collector process does not call your finalize

method. Because this method is not available, you need to rely on your own

application flow to carry out an appropriate resource cleanup process. This is

generally a good practice anyway. You should free resources as soon as they

Restrictions 25

become available; don’t leave the timing of this process to the notoriously strange

behavior of the garbage collector.

Error Handling

Some restrictions apply to error handling. The CLDC does not include support

for run-time errors. If an error occurs, the best approach is to terminate the

operation of the application. With respect to the java.lang.Error exception

class hierarchy, Table 2.3 provides a summary of a few of the issues related to

error handling. In some cases, there is little chance of recovering from an error,

so the error type is not in the CLDC list. In other cases, the best approach to

handling an error is to inform the device OS and have the device OS proceed

from there. If an error occurs only in situations in which your application

cannot recover, there’s no need for the CLDC to provide you with access to

them.

Old and New Versions

The JavaME class does not include connectivity classes such as those found in the

java.net.* hierarchy. Because of the interdependencies in the current com-

munications library, connectivity classes could not be included without breaking

the migration rules. Instead of such classes, the CLDC includes a framework for

a new communications class hierarchy known as the connection framework.

The cut-down framework of the CLDC design is exactly that—a design. There

are no included classes that actually implement it. For that, you look to the world

of profiles.

26 Chapter 2 n Java ME Overview

Table 2.3 java.lang.Error Exceptions

Exception Description

java.awt.AWTError Because there is no AWT in the CLDC, this isn’t required.

java.lang.LinkageError An error relating to class compilation inconsistencies. There are
many subclasses of this exception, such as java.lang.No-
ClassDefFoundError.

java.lang.ThreadDeath This type of error is not listed in the CLDC. The application is
not able to do much which such an error.

java.lang.VirtualMachineError Such errors are often of the types OutOfMemoryError and
StackOverflowError. Most devices cannot handle such errors.

CLDC 1.1 adds a number of features not provided with CLDC 1.0 and improves

several existing features. Among these are the following:

n Floating point support

n Weak reference support (small subset of the J2SE weak reference classes)

n NoClassDefFoundError class

n Attributes and method:
Boolean.TRUE, Boolean.FALSE
Date.toString()
Random.nextInt(int n)
String.intern()
String.equalsIgnoreCase()
Thread.interrupt()

n Classes Calendar, Date, and TimeZone have been redesigned to be more

J2SE-compliant.

n Minimum memory has been raised form 160 to 192 KB.

JVM Differences
As mentioned briefly at the beginning of this chapter, Java ME uses the Kilobyte

Virtual Machine (KVM), which is a limited version of the Java VM. At the same

time, it is comprehensive with respect to the CLDC. The primary features

excluded from the KVM are as follows:

n Weak references—lets you keep a reference to an object that is still garbage

collected

n Reflection—the power to ‘‘look into’’ code at runtime

n Thread groups and daemon threads—advanced thread control

n The Java Native Interface (JNI)—lets you write your own native methods

(this is not appropriate for sandbox development)

n User-defined class loaders

Reflection is the Java feature that lets your program inspect the code being

executed at runtime. This means you can inspect the code in classes, objects,

JVM Differences 27

methods, and fields. The KVM does not support reflection in any form, which

also means that you have no access to features that inherit their functionality

from the reflection core, such as the Java Virtual Machine Debugging Interface

(JVM DI), Remote Method Invocation (RMI), object serialization, and the

profiling toolset.

When you develop games for micro devices, you can live without most of these

features. For example, RMI lets you execute methods across a network. The RMI

proves too heavy to use effectively. You can achieve the same level of func-

tionality by coding a simpler system on your own. Object serialization is

something that would be useful for saving and loading game states. However, you

can code this for yourself without too much trouble.

While the profiling toolset is also not available, not having the profiling tools just

means you can’t write your own profiling system. Likewise, you won’t be able to

create your own debugging system.

User-defined class loaders are another feature that is omitted from the KVM.

These were used primarily to reconfigure or replace the class-loading mechanism

with one that you supply. Unfortunately, the sandbox security model does not

work very well if you implement a class loader and circumvent the security

entirely.

CLDC Packages and Class Libraries
Despite restrictions, an extensive library of classes is included in the CLDC. In

determining which classes to deploy, the designers of the CLDC faced a number

of issues. The first was the key driver behind everything—resources. They had

less free space. Some things had to go, and that naturally meant they couldn’t

please everyone.

This also raised the issue of compatibility. The goal was to retain as much as

possible the similarity to and compatibility with the J2SE libraries. To facilitate

this, the designers divided the CLDC libraries into two logical categories—classes

that are a subset of J2SE and classes that are specific to the CLDC.

These classes are differentiated by the prefix of the library. First are Java ME

classes that are based on a subset of equivalent J2SE subset classes. For example,

java.lang.String has the same name in the Java ME and the J2SE. It’s just a

reduced version. CLDC-specific classes appear under the java extensions hier-

archy javax.*. This is reserved for classes that do not normally appear in J2SE.

28 Chapter 2 n Java ME Overview

No t e

CLDC-specific classes sound great, but in reality they don’t exist. The CLDC specifies a single
group of classes relating to connectivity, but it’s not the role of the CLDC to implement these;
that’s the job of a profile, such as the MIDP.

To discern how the classes implemented for the CLDC differ from or resemble

those in the J2SE implementation, you can apply the following rules:

n The package name must be identical to the corresponding J2SE

counterpart.

n There cannot be any additional public or protected methods or fields.

n There cannot be changes to the semantics of the classes and methods.

To emphasize the third point, a J2SE class implemented in JavaME can only have

methods removed. Methods are not added. Further, there can be no change in

the interface (use and arguments) of the existing methods.

No t e

One thing you might notice when looking through the CLDC class libraries is the distinct lack of a
few key elements, such as user interface and access to device-specific functions. That’s the job of
a given device category’s profile. Later in this chapter discussion is provided about these profile-
specific libraries.

Here is the list of packages for the CLDC.

n java.io

n java.lang

n java.lang.ref

n java.util

n javax.microedition.io

Following is a list of some of the available CLDC classes. If you are familiar with

the J2SE implementation of the classes, keep in mind that in several instances

methods are removed. For a comprehensive list, access http://java.sun.com/

javame/reference/apis/jsr139/.

CLDC Packages and Class Libraries 29

http://java.sun.com/javame/reference/apis/jsr139/
http://java.sun.com/javame/reference/apis/jsr139/

System classes
n java.lang.Object
n java.lang.Class
n java.lang.Runtime
n java.lang.System
n java.lang.Thread
n java.lang.Runnable
n java.lang.Throwable

Input/output classes
n java.io.InputStream
n java.io.OutputStream
n java.io.ByteArrayInputStream
n java.io.ByteArrayOutputStream
n java.io.DataInput (interface)
n java.io.DataOutput (interface)
n java.io.DataInputStream
n java.io.DataOutputStream
n java.io.Reader
n java.io.Writer
n java.io.InputStreamReader
n java.io.OutputStreamWriter
n java.io.PrintStream

Collection classes
n java.util.Vector
n java.util.Stack
n java.util.Hashtable
n java.util.Enumeration (interface)

Type classes
n java.lang.Boolean
n java.lang.Byte
n java.lang.Character
n java.lang.Class
n java.lang.Double
n java.lang.Float
n java.lang.Integer
n java.lang.Long
n java.lang.Short
n java.lang.String
n java.lang.StringBuffer

Date and Time classes
n Calendar
n java.util.Date
n java.util.TimeZone

30 Chapter 2 n Java ME Overview

Exception classes
n java.lang.Exception
n java.lang.ClassNotFoundException
n java.lang.IllegalAccessException
n java.lang.InstantiationException
n java.lang.InterruptedException
n java.lang.RuntimeException
n java.lang.ArithmeticException
n java.lang.ArrayStoreException
n java.lang.ClassCastException
n java.lang.IllegalArgumentException
n java.lang.IllegalThreadStateException
n java.lang.NumberFormatException
n java.lang.IllegalMonitorStateException
n java.lang.IndexOutOfBoundsException
n java.lang.ArrayIndexOutOfBoundsException
n java.lang.StringIndexOutOfBoundsException
n java.lang.NegativeArraySizeException
n java.lang.NullPointerException
n java.lang.NoClassDefFoundException
n java.lang.SecurityException
n java.lang.VirtualMachineException
n java.util.EmptyStackException
n java.util.NoSuchElementException
n java.io.EOFException
n java.io.IOException
n java.io.InterruptedIOException
n java.io.UnsupportedEncodingException
n java.io.UTFDataFormatException

Error classes
n java.lang.Error
n java.lang.NoClassDefFoundError
n java.lang.VirtualMachineError
n java.lang.OutOfMemoryError

MIDP
As mentioned previously in this chapter, the CLDC does not provide user

interface components for specific applications. User interface components are

device-specific. Implementation of software for them is made possible by a

profile. The Mobile Information Devices Profile (MIDP) specification designates

a target platform that can serve a broad range of handheld devices, especially

MIDP 31

mobile phones. TheMobile Information Devices Profile 2.0 (MIDP 2.0) provides

the set of packages you work with directly in this book. Using the MIDP 2.0, you

can implement the MIDlet class so that, among other things, you can work with a

device emulator using such tools as the Java Wireless Toolkit and other devel-

opment aids.

Target Hardware Environment

The characteristics of some target devices can be extremely limited. The screens

are tiny, and the memory is only barely adequate. In some cases the CPUs

perform relatively slowly. On the other hand, recently it has become more

common for MIDs to exceed minimum specifications. Among other things,

devices in recent days sport relatively large color screens, more RAM, expanded

I/O capabilities, and next-generation networking.

The games you develop on powerful devices in some ways cross boundaries of

design into domains once reserved for consoles and PCs, but it is still a good idea

to plan for limited resources. Even on low-end hardware, you can still make some

great games. Table 2.4 provides the recommended minimum MIDP device

characteristics.

Target Software Environment

Like the target hardware environment, the software that controls MIDs can vary

significantly in both functionality and power. At the higher end of the market,

32 Chapter 2 n Java ME Overview

Table 2.4 Device Characteristics

Characteristic Description

Display 96� 54 pixels with 1 bit of color with an aspect ratio (pixel shape) of
approximately 1 to 1

Input types One-handed keyboard or keypad (like what you see on a typical phone)

Two-handed QWERTY keyboard (resembling a PC keyboard)

Touch screen

Memory 128 KB of nonvolatile memory for MIDP components

8 KB of nonvolatile memory for application-generated persistent data

32 KB of volatile memory for the Java heap (run-time memory)

Networking Two-way wireless, possibly intermittent, connectivity

Usually quite limited bandwidth

MIDs are similar to small PCs. At the low end, however, some components, such

as file systems, are not available. As a result of the varying descriptions of MIDs,

the MIDP specifications mandate basic systems software capabilities. Table 2.5

lists the most relevant of these capabilities.

No t e

Volatile memory is also known as dynamic memory, heap memory, or RAM. It stores data only as
long as the device remains powered on. Nonvolatile memory is known as persistent or static
memory. It typically uses ROM, flash, or battery-backed SDRAM and stores information even after
the device has been powered down.

MIDP S p e c i f i c a t i o n

Like the CLDC, the Mobile Information Device Profile (JSR 37) development effort was part of the
Java Community Process expert group. Table 2.6 lists some of the companies involved in the
specification effort.

MIDP 33

Table 2.5 Software Characteristics

Characteristic Description

Memory Access to a form of nonvolatile memory (for storing things like player name and
high scores)

Networking Sufficient networking operations to facilitate the communications elements of the
MIDP API

Graphics Ability to display some form of bitmapped graphics

Input A mechanism to capture and provide feedback on user input

Kernel Basic operating system kernel capable of handling interrupts, exceptions, and some
form of process scheduling

Table 2.6 MIDP Specification Contributors

America Online Bull DDI

Ericsson Espial Group, Inc. Fujitsu

Matsushita Mitsubishi Motorola

NEC Nokia NTT DoCoMo

Palm Computing RIM (Research In Motion) Samsung

Sharp Siemens Sony

Sun Microsystems Symbian Telcordia Technologies

MIDP Packages and Class Libraries
TheMIDP does a good job of locking down the hardware characteristics of MIDs

for you, but there is more to developing applications than describing the hard-

ware. The MIDP also delivers the real guts of the Java ME mobile software

solution—the libraries.

The MIDP libraries provide tools designed specifically for the idiosyncrasies of

development on MIDs. This includes access to the following packages:

n java.io

n java.lang

n java.util

n javax.microedition.io

n javax.microedition.lcdui

n javax.microedition.lcdui.game

n javax.microedition.media

n javax.microedition.media.control

n javax.microedition.midlet

n javax.microedition.pki

n javax.microedition.rms

Starting in Chapter 7, you find a review of the details of the API. For now, here is

a list of some of the available classes. The list provides a summary view of the

MIDP 2.0. For a complete list for the MIDP 2.0, access http://java.sun.com/

javame/reference/apis/jsr118/index.html.

General utility
n java.util.Timer
n java.util.TimerTask
n java.lang.IllegalStateException

Language and type classes
n java.lang.Byte

34 Chapter 2 n Java ME Overview

http://java.sun.com/javame/reference/apis/jsr118/index.html
http://java.sun.com/javame/reference/apis/jsr118/index.html

n java.lang.Character
n java.lang.Double
n java.lang.Float
n java.lang.Integer
n java.lang.Long
n java.lang.Math
n java.lang.Runtime
n java.lang.Short
n java.lang.String
n java.lang.StringBuffer
n java.lang.System
n java.lang.Thread
n java.lang.Throwable

User interface classes
n javax.microedition.lcdui.Choice (interface)
n javax.microedition.lcdui.CommandListener (interface)
n javax.microedition.lcdui.ItemStateListener (interface)
n javax.microedition.lcdui.Alert
n javax.microedition.lcdui.AlertType
n javax.microedition.lcdui.Canvas
n javax.microedition.lcdui.ChoiceGroup
n javax.microedition.lcdui.Command
n javax.microedition.lcdui.DateField
n javax.microedition.lcdui.Display
n javax.microedition.lcdui.Displayable
n javax.microedition.lcdui.Font
n javax.microedition.lcdui.Form
n javax.microedition.lcdui.Gauge
n javax.microedition.lcdui.Graphics
n javax.microedition.lcdui.Image
n javax.microedition.lcdui.ImageItem
n javax.microedition.lcdui.Item
n javax.microedition.lcdui.List
n javax.microedition.lcdui.Screen
n javax.microedition.lcdui.StringItem
n javax.microedition.lcdui.TextBox
n javax.microedition.lcdui.TextField
n javax.microedition.lcdui.Ticker

Application classes
n javax.microedition.midlet.MIDlet
n javax.microedition.midlet.MIDletStateChangeException

Record management classes
n javax.microedition.rms.RecordComparator (interface)

MIDP Packages and Class Libraries 35

n javax.microedition.rms.RecordEnumeration (interface)
n javax.microedition.rms.RecordFilter (interface)
n javax.microedition.rms.RecordListener (interface)
n javax.microedition.rms.RecordStore
n javax.microedition.rms.InvalidRecordIDException
n javax.microedition.rms.RecordStoreException
n javax.microedition.rms.RecordStoreFullException
n javax.microedition.rms.RecordStoreNotFoundException
n javax.microedition.rms.RecordStoreNotOpenException

Networking classes
n javax.microedition.io.Connection (interface)
n javax.microedition.io.ContentConnection (interface)
n javax.microedition.io.Datagram (interface)
n javax.microedition.io.DatagramConnection (interface)
n javax.microedition.io.HttpConnection (interface)
n javax.microedition.io.InputConnection (interface)
n javax.microedition.io.OutputConnection (interface)
n javax.microedition.io.StreamConnection (interface)
n javax.microedition.io.StreamConnectionNotifier (interface)
n javax.microedition.io.Connector
n javax.microedition.io.ConnectionNotFoundException

Game classes
n javax.microedition.lcdui.game.GameCanvas
n javax.microedition.lcdui.game.Layer
n javax.microedition.lcdui.game.LayerManager
n javax.microedition.lcdui.game.Sprite
n javax.microedition.lcdui.game.TiledLayer

MIDP 2.0 Game Package
In this book, the focus is on the use of the classes included in the MIDP 2.0. One

of the MIDP’s most significant assets for game developers is the Game package

(detailed in Table 2.7). Table 2.7 provides a summary of the Game package. The

classes that make up the Game package are discussed in greater detail later on, but

in this context, it is appropriate to note that they address some basic and

important programming activities. Specially, they allow you to easily implement

such things as painting, message processing for game events, layering, collision

detection, and transformation. The GameCanvas class specializes the Canvas class.

The Sprite and TiledLayer classes are specializations of the Layer class.

36 Chapter 2 n Java ME Overview

MID Applications
Generally, a Java program written to be executed on a mobile information device

is called a MIDlet. Obviously, the name is a play on ‘‘applet.’’ The MIDlet is subject

to some rules regarding its run-time environment and packaging. The next few

sections provide a general discussion of these topics. Chapter 4 shows you how to

work with JAR, JAD, and other files in detail.

To develop a MIDlet, in addition to the Java file that contains the imple-

mentation of the MIDlet class, you use a manifest and a JAR file, as you do with

any Java application. You add to this a Java application descriptor (JAD) file. The

JAD offers a few extended configuration options as you work with the MIDlet.

You use the JAD file to formally identify one or more MIDlets for inclusion in

your application.

When you include one or more MIDlets in an application, you create a MIDlet

suite. When you develop a suite, you then see each MIDlet in the suite displayed

in the MID display area. Each can be executed as separate program. Among other

things, you can use the suite to set display values. Chapter 4 provides a simple

example of how to implement both a single MIDlet and a MIDlet suite.

MID Applications 37

Table 2.7 The Game Package Classes

Class Description

GameCanvas This class allows you to lay out the basic user interface of a game. It provides a
variety of features, such as buffering and query capabilities.

Layer You can use a Layer object to represent a Sprite or a TiledLayer object. It
allows you to work with attributes relating to the location, size, and visibility of such
objects. This is an abstract class.

LayerManager This class enables you to control what the user sees of the game. It provides
comprehensive services for rendering and allows you to control several Layer objects.

Sprite A Sprite is a Layer characterized by animation and usually involves a set of
graphical frames of equal size. An Image object furnishes the frames. Normally, the
frames are displayed sequentially, but the Sprite class also allows for them to be
displayed in an arbitrary way. In addition to displaying frames, the Sprite class
provides methods for flipping and rotating images and for detecting collisions.

TiledLayer A TiledLayer object provides a substitute or extension of Image objects. Rather
than storing images in single extended area, the TiledLayer object provides a grid
of cells. Each cell displays one of several tiles provided by a single Image object.

MID Run-Time Environment

It is the role of the device’s built-in application manager to start and stop the

execution of a MIDlet. To accomplish this, the application manager must access

the following resources:

n The Java files that provide the MIDlet

n The contents of the MIDlet descriptor file

n Classes made available as part of the CLDC and MIDP libraries

With respect to the packaging of the application, the JAR file should contain all

the classes required to run the application, along with all the resources, such as

image files and data. To set application execution options, you name properties

within a plain text MIDlet JAD file. JAD allows you to include a given MIDlet

multiple times or to exclude a MIDlet as you assemble a MIDlet suite.

MID Suite Packaging

As mentioned previously, a MIDlet application typically takes the form of a JAR

file. This JAR file should contain all of the class and resource files required for your

application. It should also contain a manifest file with the name manifest.mf.

The manifest is a text file containing attribute-value associations separated by a

colon. Here is an example of an attribute-value association:

MIDlet-1: TestProps1, ,test.TestProps2

If your manifest file contains information on multiple MIDlets (a MIDlet suite),

you should use the MIDlet-<N> attributes to specify information on each of the

individual MIDlets within the package. Here are some examples:

MIDlet-1: TestProps1, ,test.TestProps2
MIDlet-2: TestProps2, ,test.TestProps2

The first argument after the colon identifies the name of the MIDlet. The second

argument is optional and is used to identify the icon associated the MIDlet. The

third argument names the class file for the MIDlet. Typically, your package has

one application. Table 2.8 lists the required and optional attributes included in a

manifest file.

38 Chapter 2 n Java ME Overview

In addition to those listed in Table 2.8, you can add your own attributes to the

manifest file. The only rule is that they cannot begin with the MIDlet- prefix. Also,

keep in mind that attribute names must match exactly, including case.

You might wonder what the point of the MIDlet-Jar-URL attribute is. Given that

the manifest file has to be included within a JAR, why bother having a URL to

download a JAR when you obviously must have the JAR to know the URL in the

first place? The answer involves the Java application descriptor.

MID Applications 39

Table 2.8 MIDlet JAR Manifest Attributes

Attribute Description

Required Attributes

MIDlet-Name Descriptive name of the MIDlet suite.

MIDlet-Version Version number of the MIDlet suite.

MIDlet-Vendor The owner/developer of the application.

MIDlet-<n> The name, icon filename, and class of each of the MIDlets in the
suite.

For example:

MIDlet-1: SuperGame,/supergame.png,com.your.Super-
Game

MIDlet-2: PowerGame,/powergame.png,com.your.Power-
Game

MicroEdition-Profile The name of the profile required to execute theMIDlets in this suite. The
value should be exactly the same as the value of the system property
microedition.profiles. For MIDP version 1, use MIDP-2.0.

MicroEdition-Configuration The name of the configuration required to run the MIDlets in this
suite. Use the exact name contained in the system property
microedition.configuration, such as CLDC-1.1.

Optional Attributes

MIDlet-Icon Name of a PNG image file that serves as a picture identifying this
MIDlet suite.

MIDlet-Description Text describing the suite to a potential user.

MIDlet-Info-URL URL pointing to further information on the suite.

MIDlet-Jar-URL The URL from which the JAR can be downloaded.

MIDlet-Jar-Size Size of the JAR in bytes.

MIDlet-Data-Size Minimum number of bytes of non-volatile memory required by the
MIDlet (persistent storage). The default is zero.

You don’t need to have the JAR attribute in your manifest file. It’s intended for

use in the JAD file (which is reviewed in the next section). The attribute is in the

list because the manifest file also serves as the default for any attributes not

contained within the JAD. The creators of the specifications for MIDP elected

to create a single set of attributes for both the manifest and JAD files. A

reasonable thing to do, but it still left me confused the first time I read the

specifications.

T i p

MIDlet version numbers should follow the standard Java versioning specifications, which essen-
tially specify a format of Major.Minor[.Micro], such as 1.2.34. One approach is to use the
major version to indicate a significant functional variation, the minor version for minor features
and major bug fixes, and the micro for relatively minor bug fixes.

Here is an example of a manifest file:

MIDlet-Name: Super Games
MIDlet-Version: 1.0
MIDlet-Vendor: Your Games Co.
MIDlet-1: SuperGame,/supergame.png,com.test.SuperGame
MIDlet-2: PowerGame,/powergame.png,com.test.PowerGame
MicroEdition-Profile: MIDP-1.0
MicroEdition-Configuration: CLDC-1.0

Again, note that working examples of this type of file are provided in Chapter 4.

The discussion here is intended to provide only a conceptual framework.

Java Application Descriptors

In addition to a manifest and a JAR file, you work with the Java application

descriptor (JAD). This file allows users to view the details of a MIDlet JAR

without actually having to download the whole thing. The application descriptor

file contains nearly the same attributes as those in the manifest, and it exists

independently of the JAR file. Figure 2.6 shows the relationship between all the

components of a MIDlet suite and a JAD file.

There is a close link between the JAD and the manifest files. Think of the JAD

as a mini-version of the manifest. The following attribute values must be the

40 Chapter 2 n Java ME Overview

same in both files, or else the MIDP application manager rejects the MIDlet

suite:

n MIDlet-Name

n MIDlet-Version

n MIDlet-Vendor

For all other attributes, the values in the JAD file take precedence.

Here is an example of a JAD file:

MIDlet-1: HelloMIDletWorld, , net.test.HelloMIDlet
MIDlet-Description: HelloMIDlet
MIDlet-Jar-URL: helloMIDlet.jar
MIDlet-Name: Hello MIDlet World
MIDlet-Permissions:
MIDlet-Vendor: home.net
MIDlet-Version: 2.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0
MIDlet-Jar-Size: 3201

MID Applications 41

Figure 2.6
A single JAR file lists multiple MIDlet applications, along with their resources, and a manifest and JAD
are included to describe the details of the contents.

The primary difference between the JAD and manifest examples is the inclusion

of the two MIDlet-Jar attributes. Using these attributes, the application manager

can determine the download and device storage requirements for your game.

MIDP 2.0 and MIDP 1.0
As you will see in Chapter 4, this book uses the JDK 1.6.x and theMIDP 2.0. With

the release of the MIDP 2.0, Sun has added significant functionality. Examples

provided early in the book are backward compatible with the MIDP 1.0. As the

chapters advance, however, so does the functionality, so some of the code is not

backward compatible. Table 2.9 provides a summary view of some of the features

of the MIDP 2.0 that are not in the earlier version.

The classes in the MIDP 2.0 expand support for quality sound, transparent images

(by default), and a game-oriented API. In addition to all this, the hardware

requirements for a MIDP 2.0-compatible device are less restricted. Your applica-

tion can now be as large as 256 KB (up from 128 KB), and the available run-time

memory is now 128 KB (up from 32 KB). This is great news because memory

capacity, especially the package size, was a severe limitation in MIDP 1.0.

With the MIDP 2.0 and the CLDC 1.1 (both used in this book), you have access

to floating-point support. Generally, the functionality most device users expect

to see cannot be attained without using MIDP 2.0 (and CLDC 1.1), which is why,

beginning in Chapter 4, work commences with CLDC 1.1 and MIDP 2.0. Even if

42 Chapter 2 n Java ME Overview

Table 2.9 MIDP 2.0 Features

Category Features

Networking Support for HTTPS
Incoming data can now ‘‘awaken’’ your MIDlets

Audio Play polyphonic tones (MIDI) and WAV samples

UI Improved layout tools
Better placement control
New controls, including the power to build your own controls

Games Support for graphics layers
Enhanced canvas tools
Integer arrays as images
PNG image transparency

Security Improved permission-based security system

the functionality you develop is limited to backward-compatible programs, you

are still in an excellent position to develop more advanced features.

Conclusion
This chapter reviewed the motivations, design, and inner workings of Java ME.

You saw how the CLDC and MIDP specifications provide a solid foundation

upon which you can confidently develop games for MIDs. It also provided you

with an overview of some of the tools available to you as an application pro-

grammer. In addition, it touched on the Java components that are not available

when you use Java ME.

The limitations of the CLDC and MIDP platform are in many ways significant.

Memory, processors, networking, and graphics capabilities restrict your devel-

opment activities relative to ‘‘big box’’ game efforts. This is where the real dif-

ference between programming for micro devices and PCs or consoles arises.

However, as device capabilities improve, newer versions of the CLDC and the

MIDP incorporate corresponding functionality.

Conclusion 43

This page intentionally left blank

Java ME-Enabled Devices

In Chapter 2, you investigated some of tools Java provides for working with

mobile information devices (MIDs). If you are wholly new to software devel-

opment for MIDs, keep in mind that the number and variety of such devices is

extraordinary. Many companies are developing such devices, and each company

provides a variety of specific types of devices that range widely in supported

features. In a book of this type, it is not possible to touch on more than a few

conversational points concerning MIDs. For additional details, you must visit

various Internet sites. This chapter refers to a few of those sites and provides you

with some basic vocabulary you can use to compare and assimilate the infor-

mation you find on the Internet.

MID Overview
To gain some insight into the types of devices that have characterized the MID

market over the past few years, you can begin by considering the role of price.

Lower-priced MIDs have tended to dominate the market. MIDs that cost more

provide more features but are less popular. The Nokia 3410 might be considered

the classic low-end device. Low-end devices offer limited screen sizes, resolution,

and memory. Examples of high-end devices are those in the Nokia Series 60 to 90

range and the Sony Ericsson P800/P900. More expensive devices offer fairly

sizable screens, relatively large memory stores, and faster processors. The next

45

few sections provide discussions of a few of the devices that have been offered by

companies such as Nokia, Sony Ericsson, and Motorola.

T i p

In the context of this book, development begins with the devices supported by Java ME. To find
out what devices Java ME supports, go to http://wireless.java.sun.com/device. This page lists
hundreds of devices. Although it is not a comprehensive list, it is still a good starting place for
getting a sense of the number and variety of Java ME---supported devices.

Nokia
As one of the largest manufacturers of MIDs, Nokia represents a significant

portion of the world’s MID user base, so spending a little time understanding the

Nokia product range is well worth your while. A good site for information about

Nokia products is http://forum.nokia.com. Although Nokia offers a great

number of different phone models, its devices fall into the categories listed in

Table 3.1.

Having all models follow a given series provides a convenient framework for

developers. You can develop a game for a particular series and be confident that it

works on all phones that conform to the specification for the series. The fol-

lowing few sections provide further discussion of some of the series mentioned in

Table 3.1.

Series 30

When you examine Nokia devices, you often see references to Series 30, but the

Series 30 has been superseded in some respects. The Series 30 devices at one time

represented the mass-market for Nokia. They proved successful because of their

price, and demonstrated that a low price is the key to the mass-market.

46 Chapter 3 n Java ME-Enabled Devices

Table 3.1 Nokia Series Devices

Series Screen Type Input Use

Series 30 96� 65 Monochrome/Color One-handed

Series 40 128� 128 Color One-handed

Series 60 176� 208 Color One-handed

Series 80 640� 200 Color Two-handed

Series 90 640� 320 Color Two-handed

http://wireless.java.sun.com/device
http://forum.nokia.com

Economy usually implies that features are relatively few. The original Series

30 phones were all monochrome (2-bit grayscale), with a maximum MID JAR

size of 30-50 KB and heap memory of around 150 KB. In later versions, Series

30 phones provided 96� 65 pixels and a 4,096-color screen. The JAR size grew to

64 KB. All Series 30 phones used the regular phone keypad layout you see in

Figure 3.1. A more advanced version, the 3510i, is shown in Figure 3.2.

T i p

Even though devices in the lower ranges, such as Series 30, are limited in what you can do with
them, it is important not to dismiss such devices as vehicles for game development. While low-
end devices tend to restrict options with respect to things like JAR size, they are advantageous
because they achieve large markets due to their low price. When you reach a large market, the
game you develop achieves greater visibility. That leads to a number of possibilities, such as
redevelopment in more involved versions.

Series 40

Devices in the Nokia Series 40 constitute what might be viewed as a Java ME

gaming heartland. Devices in this range have taken the position once occupied by

the Series 30 devices. They remain inexpensive and extremely popular, and they

Nokia 47

Figure 3.1
The low-end Nokia 3410 offered a 96� 65 monochrome screen and a maximum JAR size of 50 KB.

offer enough power to make for fun gaming. They have become one of the most

widely supported and targeted phone classes for Java ME developers.

T i p

The details on different phone models can vary. For Nokia products, see Forum Nokia (http://
www.forum.nokia.com). There you find detailed information on the capabilities of the devices in
series Nokia currently supports. Keyboard characteristics, resolution, memory, and a variety of
other features comprise the full description of a device.

Series 40 devices have a 128� 128-pixel 4,096-color screen. They support a

minimum MID JAR size of 64 KB and heap memory of 200 KB. Several of the

devices exceed these capabilities. The input layouts can vary, as you can see in

Figures 3.3 and 3.4. The Nokia 3300 (Figure 3.3) is one device that involves form

features. A form feature is any characteristic of the design of the chassis of a

mobile device that gives it a distinctive appearance and operational character-

istics. A form feature does not usually extend beyond how the device looks, but

with variations in I/O characteristics, form features can certainly affect how you

program the device. The Nokia 3300 has been marketed with packages that allow

its users to acquire music and interact with their PCs.

48 Chapter 3 n Java ME-Enabled Devices

Figure 3.2
The Nokia 3510i, a second-generation Series 30, added a color display and a 64 KB JAR size.

http://www.forum.nokia.com
http://www.forum.nokia.com

In contrast to form features, devices are often characterized by the skins designed

for them. A skin involves only the color and art that characterizes a given phone.

To get an idea of the multiplicity of skins any given phone or device might be

sold with, visit http://www.skinit.com. In this respect, the Nokia 6820 represents

standardized form features but leaves the option of a multitude of skins (see

Figure 3.4).

Nokia 49

Figure 3.3
The creative Nokia 3300 has a distinct form factor but still follows the Series 40 specification.

Figure 3.4
The Nokia 6820 is a typical Series 40 device.

http://www.skinit.com

Series 60

The Nokia Series 60 is an example of one of the advanced devices Nokia offers.

The standard screen size jumps to 176� 208. The color depth begins as 12-bit

(4,096) color. The JAR size is 4 MB. Heap memory is also up considerably, to

1MB or more. Devices in this series include the 3600, 3650 (shown in Figure 3.5),

6600, 7650, and N-Gage.

Figure 3.6 shows an N-Gage device. N-Gage devices are thoroughly asso-

ciated with games (or game decks) and have been marketed primarily as gaming

devices that provide users with access to downloadable games. Sites such as

http://www.n-gage.com/ provide a view of the games and activities associated

with the N-Gage culture.

Series 80

The Nokia Series 80 devices are at the higher end of the range of series. They are

suitable for personal digital assistants (PDAs). As Figure 3.7 reveals, such devices

fold. A device that folds once is known as a bi-fold device. Folding devices allow

50 Chapter 3 n Java ME-Enabled Devices

Figure 3.5
The Nokia 3650 is a typical Series 60 device.

http://www.n-gage.com/

for larger screens, among other things; the screen on the device shown is

640� 200. Its keyboard, on the other hand, is a small QWERTY keyboard. The

JAR size for such a device is 14 MB or larger.

Nokia 51

Figure 3.6
The Nokia N-Gage is a device often associated with gaming culture.

Figure 3.7
The Nokia 9290 provides a QWERTY keyboard and a phone keypad.

No t e

The QWERTY keyboard is what you find on a standard laptop. This type of keyboard dates from
the 1800s and is named for the position of the keys. Originally, typewriter keys were arranged
alphabetically. The letters of a QWERTY keyboard are arranged for efficient typing. This is sig-
nificant for MIDs, because many devices that serve as dictionaries and planners have alphabetical
keyboards.

As mentioned previously, the higher-end devices reach smaller markets. For this

reason, developers often prefer to develop for lower-range devices and then port

their software to the higher-range devices. As is probably fairly evident, porting

from higher range devices to devices in the lower range is not practical. Figure 3.7

shows a Series 80 device.

Series 90

The Nokia Series 90 devices are also suitable for PDAs. However, they differ from

the Series 80 devices in that they do not include the keyboard. Instead, users use a

pen to input data. While this adds the need for an input pen, it also means Series

90 devices are smaller. A typical Series 90 device offers a 640� 320 16-bit

(65,536-color) display and accommodates a MIDlet of 64 MB. Like the Series 80,

Series 90 devices reach a limited market. Cost is the primary limiting factor.

Figure 3.8 shows a Series 90 device.

52 Chapter 3 n Java ME-Enabled Devices

Figure 3.8
The Nokia 7700 provides a variety of programs.

Sony Ericsson
Ericsson deals largely with mobile communications technologies. Sony is famous

for many other things that often involve packaging and design superiority.

Together Sony and Ericsson have introduced a broad range of phones that

incorporate strong support for Java ME. For more details about developing for

Sony Ericsson, visit http://www.sonyericsson.com/developer. If you click on the

Phones tab at this site, you can see a gallery that features images of a few dozen of

the Sony Ericsson devices designed primarily as phones. The next few sections

provide details on a few of these devices.

K310

Sony Ericsson phones and devices are arranged in D, J, K, W, and Z ranges. The

ranges describe differences in capabilities from screen resolution, keyboards, and

memory size to a variety of other concerns. The Sony Ericsson K310 device allows

for viewing, storing, and sharing images on its 128� 160-pixel screen. It provides

email support, Internet browsing, and storage of around 15 MB. Its JAR capacity

is unlimited, but depends on available storage. Figure 3.9 shows the K310.

Sony Ericsson 53

Figure 3.9
The Sony Ericsson K310 is often compared to T616 and is associated with an extensive array of add-ons.

http://www.sonyericsson.com/developer

54 Chapter 3 n Java ME-Enabled Devices

Sony Ericsson Z520

The Sony Ericsson Z520 (shown in Figure 3.10) has two display screens. The

main screen has a resolution of 128� 160 pixels. It offers 16 MB of memory. A

secondary screen, on the cover of the phone, is of lower resolution and can

display the time and other text data. This type of device provides users with the

ability to take still or video pictures. Such capabilities represent fairly standard

features. Given the increased memory and enhanced screen capabilities, the Z520

is suitable for 3D game development.

Motorola
Motorola offers a wide variety of devices that it categorizes into A, E, I, T, V, and

other groups. To view the devices, access http://developer.motorola.com/ and

click on Handsets. If you then click on View All, you can see the dozens of devices

Figure 3.10
The Sony Ericsson Z520 provides a number of high-end features.
Photo Source: http://www.gsmarena.com/.

http://www.gsmarena.com/
http://developer.motorola.com/

Motorola supports. The vast majority of these support Java ME. When you go to

the site and log in, you can filter the devices by using the APIs: Java ME option

and then selecting, for example, CLDC 1.0 or MIDP 2.0.

No t e

Motorola provides a development suite called Motodev Studio. The design of this integrated
development environment (IDE) resembles Eclipse, a popular IDE for Java and other developers. In
some cases, a version of Java is not available for Motodev Studio, but where it is available, it
provides a way to implement software for Motorola devices quickly and allows you to work with
Java ME.

Motorola A830

Among other features onMotorola’s developer website are specification sheets in

PDF form for devices such as the A830, which is shown in Figure 3.11. This

Motorola 55

Figure 3.11
The Motorola A830 is an example of a midrange MID.

device provides storage of 1 MB. The maximum compressed JAR size is 100 KB.

The display resolution is 176� 220 pixels.

iDEN Phones

All Motorola phones that have a model number starting with i are within the

iDEN range, starting with the lower-range i85s. It offers a 119� 64 monochrome

screen and a MIDlet size of 50 KB. Like most of the lower-end iDEN phones, its

memory is limited to 256 KB. Figure 3.12 shows the Motorola iDEN i85s.

The i730 shown in Figure 3.13 is a slightly higher-level iDEN device. It includes a

130� 130 16-bit color screen and can accommodate a MIDlet of 500 KB.

56 Chapter 3 n Java ME-Enabled Devices

Figure 3.12
The Motorola iDEN i85s.

Motorola E550

As a final example of Motorola’s devices, Figure 3.14 shows the E550. This device

provides a main screen with 176� 220 resolution. Its maximum MIDlet size is

100 KB, with MIDlet storage of up to 5 MB.

Conclusion
You can use Java ME to develop software (games) for a multitude of devices. The

devices offered by Nokia, Sony Ericsson, andMotorola represent a significant but

by no means comprehensive view of the spectrum of such devices. In each

instance, to understand why a given device has been developed, a good place to

Conclusion 57

Figure 3.13
The Motorola iDEN i730 is fairly modest in some respects but has enjoyed popularity due to its price.

start is price. Low-end devices often provide limited capabilities, but because

they are low end, they usually enjoy greater market. Higher-end devices represent

greater specialization in some cases but also offer more in terms of screen

resolution and input options.

58 Chapter 3 n Java ME-Enabled Devices

Figure 3.14
The Motorola E550 provides main and secondary screens and supports 5 MB of storage.

Setting Up for
Development

This page intentionally left blank

The JDK, theMIDP,
and a MIDlet Suite

In this chapter, the discussion returns to some of the topics presented in Chapter 2,

where JAR and JAD files were presented. To allow you to go to work, this chapter

begins with a short review of how to download and install the JDK 1.6.x and the

MIDP 2.0. These are two of the primary tools you use in this book. Once you have

the JDK and the MIDP, you can compile, pre-verify, and package the MIDlets

you develop. The two MIDlet classes you develop here are hello.java and

hello2.java, which you can use to create a MIDlet suite. All of your work is

performed on the command line or using a simple editor. The preferred editor is

Notepad. To assemble the MIDlet suite, you create a JAD file and a JAR file for the

MIDlets. As you go, you make a manifest file. The work you perform in this

chapter establishes a basic understanding of the essentials of compiling MIDlets.

Gaining a clear view of the fundamentals puts you in an excellent position to move

on to the more advanced activities or to more clearly understand automated

processes such as those you are exposed to in Chapter 5, where you work with the

Java Wireless Toolkit.

Getting the Tools
To get started, you need some tools. You require two sets of software. The first

is the Java JDK. As of the writing of this book, the JDK 1.6 is available, and the

software in this book has been created using it. In addition to the JDK, you

require the MIDP; version 2.0 is used in this book. You can work with this or

61

the 1.0 version. All of the code in this book has been written to address the 1.0 or

2.0 versions.

The next section, ‘‘Installing and Setting Up the JDK,’’ addresses specific down-

load activities. When you access the Sun site to obtain the software, note that you

must register as a Sun developer. If you are not familiar with this routine, click the

Register link and fill in the blanks. There is no charge, and you can deselect options

that allow Sun to send you updates and product information. Table 4.1 provides

essential information needed to access the JDK and MIDP software from Sun.

Keep in mind that this book focuses on functionality that is supported by MIDP

2.0. Many of the classes can be compiled using MIDP 1.0, but if the classes

include floating-point values or incorporate newer Game API features, then

compiler errors result. This is a book intended to introduce the technology, not

to explore its advanced features, but it remains that mobile device technology

grows in leaps and bounds almost daily, so using the latest version of the asso-

ciated development software remains essential.

62 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Table 4.1 Sun JDK and MIDP Software

Java Development Kit (JDK)

If you do not have a version of Java Development Kit installed already, use version 1.5.11 or above. You can
access the JDK for this version at http://java.sun.com/javase/downloads/index.jsp.

Instructions for how to download and install the JDK are given in the next section, ‘‘Installing and Setting
Up the JDK.’’ If you already have a later version installed, stick with that. There is always a chance that
different version numbers can result in problems, but every effort has been made to keep the software in
this book as general as possible. If you are given the option of downloading NetBeans with your JDK, do
so. It is installed with the JDK. Note that the NetBeans 5.5 IDE requires that you have version 5.0 or above
of the JDK installed on your computer. (Note that in this text, reference is made of 1.5.x as ‘‘version 5.x’’ or
‘‘version 5,’’ and version 1.6.x as ‘‘version 6.x’’ or ‘‘version 6.’’) Chapter 6 deals with the specifics of
installing the NetBeans IDE.

Mobile Information Device Profile (MIDP 2.0)

If you have not yet installed the MIDP, use version 2.0. As with the JDK, different versions introduce the
possibility of errors, but the code in this book is written to be as generic as possible. According to Sun, the
code for version 2.0 is backward compatible with version 1.0, so you can use that as a starting point. You
can access the MIDP software at http://java.sun.com/javame/index.jsp.

Instructions for how to download and install the MIDP 2.0 are given in this chapter under the heading
‘‘Installing and Setting Up the MIDP.’’ The name of the Zip file you download for version 2.0 is
midp-2_0-src-windows-i686.zip. It is approximately 8 MB. (The assumption here is that you are working on
a Windows operating system.)

http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javame/index.jsp

Installing and Setting Up the JDK
Many readers can skip this section. It is included for readers who are relatively

new to Java and need a refresher on installation procedures. If you already know

how to install the JDK or already have it installed on your computer, skip to the

section titled ‘‘Installing and Setting Up the MIDP.’’

The JDK has gone through many versions. Currently, Sun has released version 6

of the JDK. This book uses this version. If you are still working with version 1.5.x,

the programs are likely to compile without problems, but earlier versions cannot be

used. Among other things,MIDP 2.0 is not supported by earlier versions; if you use

NetBeans, youmust begin with version 1.5.x. (NetBeans is discussed in Chapter 6.)

No t e

Recall that Sun designates versions with three basic numbers (there can be several more). Version
5.x is represented by Sun as version 1.5.x. Version 6.x is sometimes represented as 1.6.x.

Also remember that as a developer you use the Java Development Kit (JDK).

Chances are that your computer already has a version of the Java Runtime

Environment (JRE). To see your version of the JRE, select Start > Control Panel

and then find the Java icon in the program set in the Control Panel dialog. Click

on it. After a moment, you see the Java Control Panel. Click the About button.

This shows you the current version of your JRE.

As for the JDK, one quick way to learn whether you have it installed and what

version you are working with is to go the Program Files directory in Windows

Explorer. In the Program Files directory, search for Java. In the Java directory, if

the JDK is installed, you see two folders, one for the JRE named something like

jre1.6.0_01, and one for the JDK called jdk1.6.0_01 or something similar. If

your versions are 5.0 or later, there is no need to install or reinstall.

Obtaining the JDK

Before you proceed with the activities in this section, you need a place to store

downloaded files. Create a directory on your computer inWindows File Explorer

like this one:

C:\downloads

If you need to install a version of the Java Development Kit (JDK), then access the

Sun download site first to obtain the installation executable. As is indicated in

Table 4.1, this site is at http://java.sun.com/javase/downloads/index.jsp.

Installing and Setting Up the JDK 63

http://java.sun.com/javase/downloads/index.jsp

Navigate to the download page on the Sun site. Figure 4.1 shows the download page

for the JDK 1.6.x. The box for the Windows version is checked. To complete the

download youmust accept the license terms. Beneath the black bar in Figure 4.1, you

see a line for the win (Windows) executable. Check this and click the link. After you

click the versiondownload, you see adialog boxwithopen and save options. Save the

file to your downloads directory. The zipped file for the SDK is roughly 135 MB.

Starting Your Windows JDK Installation

When you finish the download of the JDK for the Windows platform, you see a

file with roughly the following name:

jdk-1_5_0_06-windows-i586-p.exe

This is a self-contained installation executable for the JDK. Here are steps for

proceeding with the installation:

1. After you download the JDK Windows installer program (jdk-1_5_0_

11-nb-5_5-win-ml.exe, for example), select Start > Control Panel > Add or

64 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Figure 4.1
Select JDK for the Windows platform and save it to your downloads directory.

Remove Programs. In the Add or Remove Programs dialog, click Add New

Programs. Then click CD or Floppy.

2. In the Install Program from Floppy Disk or CD dialog, click Next. Then click

Browse and navigate to your download directory. From the Files of type

drop-down list, select All Files. You then see the j jdk-1_5_0_11-nb-5_5-

win-ml.exe file (or something similar). Select this file and click Open.

3. In the Run Install Program dialog, click Finish.

4. You then see an Open File – Security Warning dialog. Click Run. This starts

the Sun installation routine.

5. At this point, you see the J2SE Development Kit Update dialog. Now go

to the next section.

JDK Installation and Setup Continued

After the Sun installation program begins, follow these steps.

1. In the J2SE Development Kit dialog, click Next. You then see a license

dialog. Click the I Accept option. Then click Next. For the directories dialog,

leave the default options. Click Next.

2. You then see a dialog for verification. Click Next.

3. The installation might take several minutes. When the installation is

complete, you see the complete dialog. Click Finish.

Copying Path Information

This section requires that you first install the Java JDK. If you have not yet done

so, refer to the previous section, titled ‘‘Starting Your Windows JDK Installa-

tion.’’ In the current section, you begin by gathering two pieces of information

required later in the chapter for configuration purposes: the path to the JDK bin

directory and the path to the JDK lib directory. You use this information to

complete the installation of the JDK and to configure the MIDP files. (This

procedure is documented later in this chapter.)

To gather the needed information, use the following steps:

1. Open Windows Explorer and navigate to the following directory:

C:\Program Files\Java

Installing and Setting Up the JDK 65

2. You see two folders if you have just installed only one version of the JDK.

(More appear if you have updated your JDK since installing it.) One of the

folders is for the JDK. The other is for the JRE. Note the exact name of the

JDK. For example, you might see:

jdk1.6.0_01

3. Click on this folder. You see a bin directory. With the bin folder selected,

look at the Address field in Windows Explorer; you see a path similar to the

following:

C:\Program Files\Java\jdk1.6.0_01

The only information that might differ for you is the version number.

4. Copy exactly what you see on the Address line of Explorer to a piece of paper

or copy and paste it into a text file. (One approach is to copy it to Notepad.)

For the line in step 3, you copy a path similar to this one:

C:\Program Files\Java\jdk1.6.0_01\bin

5. Next copy the path to the lib directory. To accomplish this, use the same

procedure as in step 3 to navigate to the lib directory, which is a subdirectory

of the JDK (jdk1.5.0_11) directory. The path appears roughly

like this:

C:\Program Files\Java\jdk1.6.0_01\lib

As before, copy it to a convenient text file or piece of paper. Now proceed to
the next section.

Setting the Path and CLASSPATH Variables

This section assumes that you have performed the tasks detailed in the previous

section, ‘‘Copying Path Information.’’ If you have not completed the steps

described in the previous section, do so before beginning the tasks in this section.

After the Sun installation completes, you need to set a system variable for the

path of the JRE when you want to run a Java program. To set the system variable,

follow these steps.

1. Select Start > Control Panel. In the Control Panel window, double-click

System. The System Properties dialog appears. Click the Advanced tab.

66 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Click the Environment Variables button in the Advanced tab. The Environ-

ment Variables dialog appears. (See Figure 4.5 later in this chapter.)

2. In the Environment Variables dialog, inspect the System variables pane. It

is the lower of the two panes. In the System variables pane, scroll down until

you see the Path line.

3. Double-click the Path line. The Edit System Variables dialog appears.

4. Carefully click to activate the Variable value field. Then use the right arrow

to move the cursor to the beginning of the text in the field. At the beginning,

type a semicolon (;). Then paste or type the path you copied or wrote

down earlier. Confirm that the line ends with a slash and the word bin. The

path designates the Java bin directory. For example:

;C:\Program Files\Java\jdk1.5.0_06\bin

You add the semicolon at the beginning of the text to separate this path
from others in the list.

5. After confirming you have the correct path, click OK to exit the Edit System

Variables dialog.

6. Now scroll to the top of the System variables pane and find the

CLASSPATH system variable. Click on the CLASSPATH variable and then click

the Edit button. In the Edit System Variables dialog, activate the cursor in

the Variable value field and carefully arrow to the right end of the field.

Append the path you copied earlier to the JDK lib directory. Again, separate

the new path from those already in the field by prefixing with a semicolon.

For example:

;C:\Program Files\Java\jdk1.5.0_11\lib

7. After confirming you have the correct path, click OK to exit the Edit System

Variables dialog.

8. You have now set the PATH and CLASSPATH path environment variables. Click

OK to exit the Environment Variables dialog and again to exit the System

Properties dialog. Then close the Control Panel window.

9. When you finish with this set of actions, select Start > Turn Off Computer

> Restart. Generally, it is a good practice to restart your computer to make

new configurations take effect.

Installing and Setting Up the JDK 67

Testing Your Installation

To test your installation of the JDK, you can issue the –version command at the

command (DOS) prompt. To do so, select Start> All Programs> Accessories>
Command Prompt. You then see a Command Prompt dialog. As shown in

Figure 4.2, type java –version at the prompt. The report that follows tells you the

status of your Java installation.

Installing and Setting Up the MIDP
If you have not already done so, begin by creating a directory for your downloads

from Sun. Here’s an example of a download directory path:

C:\downloads

As is indicated earlier in Table 4.1, to reach the Sun site for the MIDP, you can

access this link: http://java.sun.com/javame/index.jsp.

Figure 4.3 provides a screenshot of the Sun page for the MIDP 2.0 software. The

Windows version is clicked. Sun asks you to register as a developer and also to

accept its license agreements. After you have completed these activities, click the

version of the MIDP 2.0 you want to download. As shown in Figure 4.3, this is

listed in the download page as

midp-2_0-src-windows-i686.zip

68 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Figure 4.2
Type java –version to verify the JDK installation.

http://java.sun.com/javame/index.jsp

After you check the version, click the link. When the Download dialog appears,

click the Save option rather than the Open option. Select your downloads

directory for the target directory of the download.

After you download the MIDP zip file, it appears in your downloads directory as

C:\downloads midp-2_0-src-windows-i686.zip

Copying the MIDP to a Directory

To install the MIDP, you unzip the file you downloaded from Sun. You copy the

files that constitute theMIDP into a directory of your choosing. Toward this end,

before you unzip the MIDP file from Sun, first create a directory into which to

copy the unzipped files:

c:\j2me

Installing and Setting Up the MIDP 69

Figure 4.3
For version 2.0, register and then navigate to the MIDP download page.

Click on the midp-2_0-src-windows-i686.zip file to open a Windows Explorer

directory window. In this window, you see one folder. The name of the folder is

as follows: midp2.0fcs. Copy this entire folder into the directory you have created

for the MIDP files. If you have created a directory called j2me, you see the

following directory path in Windows Explorer:

c:\j2me\midp2.0fcs

The copy operation is not trivial, so it might take a while even on a fairly robust

computer. The unzipped files require roughly 24 MB. In Windows Explorer,

when you are done, you see the directory structure shown in Figure 4.4.

Table 4.2 lists theMIDP directories and provides brief descriptions of each. Some

are beyond the scope of the current discussion.

Copying the Paths of the MIDP

To complete the tasks in this section, you first install the files for theMIDP. If you

have not yet done so, refer to the section titled ‘‘Installing and Setting Up the

MIDP.’’

70 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Figure 4.4
Copy the MIDP folders into a directory of your choosing.

After you complete the installation of the MIDP, your next task is to retrieve

information to set the PATH and CLASSPATH environmental variables of Windows.

To do so, use the following steps:

1. Open Windows Explorer and navigate to the following directory:

C:\j2me\midp2.0fcs

2. Click on the folder for this directory. You see a bin directory. In the bin

directory, you see a file named preverify.exe. With the bin folder selected,

if you look at the Address field in Windows Explorer, you see a path similar

to the following:

C:\j2me\midp2.0fcs\bin

3. Copy exactly what you see in the Address field of Explorer to a text file

or piece of paper. You use this information to set the PATH environment

variable. Here’s what you copy:

C:\j2me\midp2.0fcs\bin

4. Now navigate to the classes directory of the MIDP directory. The path is

roughly as follows:

C:\j2me\midp2.0fcs\classes

You use this path to set the CLASSPATH environment variable of Windows.
Copy what you see on the Address line of Windows Explorer to a file or piece
of paper. Now proceed to the next section.

Installing and Setting Up the MIDP 71

Table 4.2 MIDP Directories

Directory Description

\appdb Graphical files of the *.png type.

\bin The command line tools, preverify.exe, and the midp.exe emulator.

\build Makefiles for building MIDP for Microsoft Windows.

\classes MIDP classes. You’ll compile using these as a base.

\docs Comprehensive documentation of the MIDP; includes guides, reference materials, and
release notes.

\example Example JARs and JADs for demonstration purposes.

\lib Configuration files.

\src Example source code.

\tools Primarily the JAD tool, which you use for MIDlet suites.

Setting the PATH and CLASSPATH Variables

This section assumes that you have performed the tasks detailed in the previous

section, ‘‘Copying the Paths of the MIDP.’’ In this section, you employ the

information you collected about the MIDP paths to set Windows environment

variables. If you have not completed the tasks described in the previous section,

do so before beginning the tasks in this section.

The first environmental variable you set is the PATH variable, which allows

Windows to automatically locate and execute the preverify.exe program. To set

the PATH variable, follow these steps.

1. Select Start > Control Panel. In the Control Panel window, double-click

System. The System Properties dialog appears. Click the Advanced tab. In

the Advanced tab, click the Environment Variables button. The Environ-

ment Variables dialog appears (see Figure 4.5).

2. In the Environment Variables dialog, inspect the System variables pane,

which is the lower of the two panes. In the System variables pane, scroll

down until you see the Path line.

72 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Figure 4.5
The System Properties dialog allows you to set environment variables.

3. Double-click the Path line. The Edit System Variables dialog appears.

4. Carefully click to activate the Variable value field. Then use the right arrow

to move the cursor to the end of the text in the field. At the end, type a

semicolon (;)—this separates the path you are inserting from other paths in

the list. Then paste or type in the path you copied or wrote down earlier.

Confirm that the line ends with a slash and the word bin. The path desig-

nates the MIDP bin directory.

5. At the end of the line, append a semicolon and a period. If you do not add the

semicolon and the period, the MIDP does not function properly. The text

should look like this:

;C:\j2me\midp2.0fcs\bin;.

6. After confirming you have the correct path, click OK to exit the Edit System

Variables dialog.

7. Now set the CLASSPATH environment variable. To accomplish this, click on

the CLASSPATH line in the System variables pane. Then click the Edit button.

8. In the Edit System Variables dialog, activate the Variable value field and

carefully arrow to the end of the line. At the end of the line, append the path

to the MIDP classes directory. Precede it with a semicolon to separate it

from previously inserted paths. It appears roughly as follows:

;C:\j2me\midp2.0fcs\classes;.

9. After confirming that the CLASSPATH information is correct, click OK

to exit the Edit System Variables dialog. Click OK to exit the Environment

Variables dialog, and again to exit the System Properties dialog. Then close

the Control Panel window.

10. Optional: when you finish with this set of actions, select Start > Turn Off

Computer > Restart. Generally, you need to restart your computer to make

new configurations take effect.

T i p

To check the value of your CLASSPATH, you can enter set at the command line. This shows the
current values of all environment variables. Changes to system variables made through the
Control Panel do not take effect until you open a new command line (Command Prompt) after
making changes to your computer’s environment variables.

Installing and Setting Up the MIDP 73

Setting MIDP_HOME

Some environment variables, such as PATH, already exist. You access them and

then update the information associated with them. Other system variables you

add on your own. For the MIDP executable, you add an environmental variable

named MIDP_HOME. To accomplish this, use the following procedure:

1. Select Start > Control Panel. In the Control Panel window, double-click

System. The System Properties dialog appears. Click the Advanced tab. Click

the Environment Variables button in the Advanced tab. The Environment

Variables dialog appears.

2. In the Environment Variables dialog, inspect the System variables pane.

Click the New button.

3. The New System Variable dialog appears.

4. In the Variable name field, type the following:

MIDP_HOME

5. In the Variable value field, type the following:

;C:\j2me\midp2.0fcs

6. After confirming that the MIDP_HOME information is correct, click OK to

exit the New System Variable dialog. Click OK to exit the Environment

Variables dialog, and again to exit the System Properties dialog. Then close

the Control Panel window.

7. Optional: when you finish this set of actions, select Start > Turn Off

Computer> Restart. Generally, it is a good idea to restart your computer to

make new configurations take effect.

No t e

To check the value of environment variables, open a Command Prompt window. (You can enter
cmd in the Run field of the Start > Run path.) Enter set in the command line. This shows the
current values of all environment variables. System variables take effect when you open a
Command Prompt after you have made changes.

Verifying the MIDP Configuration

To test whether you have correctly installed and configured the MIDP, enter a

few commands in the Command Prompt window. First, open a Windows

74 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Command Prompt window by selecting Start > Run. In the Run field, type cmd.

After the Command Prompt window opens, type preverify at the prompt, as

Figure 4.6 illustrates. The preverify command is a primary token for the MIDP. It

invokes the program that checks the syntax of the code for your MIDlets.

After issuing the preverify command, check for the version of the MIDP. To

accomplish this, as shown in Figure 4.7, type midp -version at the prompt. After

you issue this command, you should see three lines of output. This verifies your

version of the MIDP and the CLDC.

Installing and Setting Up the MIDP 75

Figure 4.6
Enter preverify at the prompt.

Figure 4.7
Enter midp –version at the prompt.

No t e

If you see an error message, it is likely that you have not concluded one or more lines in the
environment variable Value fields with a semicolon and a period. Go back and check the CLASSPATH,
PATH, and MIDP_HOME values in the System dialog for environment variables (see Figure 4.5).
Environment variables are usually identified in system messages with a dollar sign ($).

Setting Up a Working Directory
If you have followed the directions given so far in this chapter, your MIDP files

reside in a directory called j2me. After you use this directory path to define the

MIDP_HOME environment variables, it becomes a permanent feature of your

development activities. You can now create a working project directory that

makes use of the path. Accordingly, use Windows Explorer to create a project

directory that is consistent with the MIDP_HOME path:

C:\j2me\projects

For the projects you develop, add subdirectories to the projects directory. Now

each subdirectory becomes what you might recognize as a standard Java package

name. For the first project, create a directory named hello. Then add a java file to

this directory called hello.java. The next section provides instructions for

creating the hello.java code.

No t e

When you move back and forth between Windows Explorer and the Command Prompt window, to
eliminate the need to repeatedly type long paths, you can click on a folder in Windows Explorer
and drag it across your desktop to the Command Prompt window. The path appears at the
prompt. To change directories, first type cd after the prompt in the Command Prompt window.
Follow this with a space. Then drag and drop a folder from Windows Explorer. If you try this with
the directory structure suggested for the current chapter, you end up with a series of commands
along the following lines. Start with the given prompt:

C:\>

Then drag and drop the folder from Windows Explorer:

C:\>C:\j2me\projects\hello

Insert the cd command. Use the arrow keys and type the command at the beginning of the
directory path:

C:\>cd C:\j2me\projects\hello

76 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Creating a MIDlet
In this section, you create a MIDlet, which is a micro device application (or

applet). As mentioned in the previous section, before you begin work on this

project, create a projects directory:

C:\j2me\projects

In the projects directory, create a subdirectory called hello:

C:\j2me\projects\hello

At this point, open Notepad or some other editing application. Save the file as

hello.java. For Notepad and other generic editors, set the Encoding field to

ANSI and the file type as *.java. The source code for hello.java is available on

the CD in the Chapter 4 code folder. You can access it there and copy it into your

projects directory, or type it as follows:

/**
* Chapter 4 \ hello.java
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class Hello extends MIDlet
implements CommandListener{

protected Form form;
protected Command quit;

/**
* Constructor for the MIDlet
*/

public Hello(){
// Create a form and add our components
form = new Form("Hello MIDlet");
form.append("Hello, Micro World!");

// Create a way to quit
form.setCommandListener(this);
quit = new Command("Quit", Command.SCREEN, 1);
form.addCommand(quit);

}

Creating a MIDlet 77

/**

* Called by the Application Manager when the MIDlet is
* starting or resuming after being paused.
*/

protected void startApp() throws MIDletStateChangeException{
// Display the form
Display.getDisplay(this).setCurrent(form);

}

/**
* Called by the MID’s Application Manager to pause the MIDlet.
*/

protected void pauseApp(){
}

/**
* Called by the MID’s Application Manager when the MIDlet is
* about to be destroyed (removed from memory).
*/

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}

/**
* Called to execute the quit command
*/

public void commandAction(Command command, Displayable displayable){
// Check for our quit command and act accordingly
try
{

if (command == quit)
{

destroyApp(true);
// Tell the Application Manager of quitting
notifyDestroyed();

}
}

// Catch even if not thrown
catch (MIDletStateChangeException me){
}

}
}

78 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Compiling Your Application

To compile the hello.java program, use the DOS CD command to change

directories to reach the directory that contains the file C:\j2m2\projects:

cd \j2me\projects\hello

You then see this prompt:

C:\j2me\projects\hello>

No t e

A file called MIDletCC.txt is included in the Chapter 4 directory. This file contains the lines
for the compile, preverify, and run commands. Copy and paste the lines from these commands
to the DOS prompt to more quickly get through the initial phases of learning how to compile
the code.

To compile the hello.java file, enter the following command at the prompt:

javac -target 1.6 -bootclasspath %MIDP_HOME%\classes Hello.java

The -target 1.6 argument relates to the current version of the JDK. Use of the

version number indicates to the Java compiler to output class files in 1.6 version

format. (You can also leave this argument out.)

The -bootclasspath %MIDP_HOME%\classes argument forces the compiler to use

only the classes in the MIDP classes directory, which contains the core MIDP and

CLDC class files. This ensures that what you are compiling is compatible with the

intended run-time target.

The compiler generates a class file named Hello.class. Use the DOS DIR

command to view the *.class file. You see the following files:

C:\j2me\projects\hello>dir/B
Hello.class
hello.java
C:\j2me\projects\hello>

Using Preverify with the Class File

The next step is to preverify the class file. Work again from the prompt you used

before:

C:\j2me\projects\hello>

Creating a MIDlet 79

Issue the following command:

preverify -cldc -classpath %MIDP_HOME%\classes;. -d . Hello

Although this looks complicated, it is a relatively simple command. First, the

-cldc option checks to see that you’re not using any language features not

supported by the CLDC.

The classpath argument points to both the MIDP class library and the location

of your project class files. The -d argument sets the destination directory for the

resulting post-verified class files. Hello is the name of the file you want to verify.

When you issue the preverify command, you overwrite your original class file

with the new one. Later on, this approach can be altered.

Running Your MIDlet

To run the MIDlet, continue to work from the Command Prompt you worked

with in the previous sections:

C:\j2me\projects\hello>

Issue the following command:

midp -classpath . Hello

When you issue this command, the MIDP window opens on your desktop.

Figure 4.8 illustrates what you see.

At this point, you can interact with the emulator in two ways. You can click the

standard red control button in the upper right of the MIDP window to close the

window. You can also click the button with the horizontal phone icon to the right

of the SELECT button (see Figure 4.8). If you have executed your program from

the Command Prompt window, use the up arrow key to invoke the run com-

mand to experiment with the MIDlet.

Creating the Full Package
To complement the development activity involved in a single MIDlet, the next

step is to create a MIDlet suite. As was discussed in Chapter 2, a MIDlet suite

consists of two or more MIDlets. Toward this end, in this section, you create a

second MIDlet, Hello2.

80 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Hello, Again

Using the following code example, create a second MIDlet in a file named

hello2. java. To implement the code for this file, you can type it or use the code

in the Hello2.java file in the Chapter 4 folder. Place it in your projects/hello

directory. Use the procedure you used before. If you create it yourself, name it

hello2.java. This MIDlet makes use of the hello.java file, so for now the

simplest approach to working with it is to place it in the same package (or

directory) as the hello.java file.

/**
* Chapter 4 \ hello2.java
* This MIDlet is used to demonstrate how multiple MIDlets make
* up a MIDlet suite. This class extends the Hello class and overides

Creating the Full Package 81

Figure 4.8
The Sun emulator displays the Hello MIDlet.

* the constructor so it displays different content in the form.

82 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

*
*/
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

// #1 Extends the Hello class
public class Hello2 extends Hello
{

// If you want to run this class alone, remove the comment:
// Form form;
public Hello2()
{

// #2 Create a form and add text
form = new Form("Hello2 Midlet");
form.append("Hello Twice to Micro World!");

// Create a way to quit
form.setCommandListener(this);
quit = new Command("Quit", Command.SCREEN, 1);
form.addCommand(quit);

}
}

As the comments reveal, the Hello2 class extends the Hello class. Discussion of

the fundamentals of inheritance (extending one class from another) is a bit

beyond the scope of this chapter. Still, as the class signature following comment

#1 reveals, the use of the extends keyword allows you to make use of the func-

tionality implemented in the base class, Hello. Rather than completely rewriting

the code for a secondMIDlet, by extending the Hello class, you are able to use the

previously implemented code. In the derived class, as the line following comment

#2 shows, you revise the title and text components in the constructor.

No t e

Looking at the code for your first MIDlet, you might notice that the three attributes------display,
form, and quit------are in protected, not private, scope. This way, when you derive Hello2, you
have access to these fields inside its constructor.

Building the Class

When you have the hello2.java file ready, use the procedures you used in the

previous section to compile, preverify, and test the class. Accordingly, first

compile it by opening the Command Prompt and changing directories until the

prompt shows the hello directory:

C:\j2me\projects\hello>

At this prompt, issue the compile command for the hello2.java file:

javac -target 1.6 -bootclasspath %MIDP_HOME%\classes Hello2.java

After you compile, the hello2.class file is generated. Then issue the preverify

command:

preverify -cldc -classpath %MIDP_HOME%\classes;. -d . Hello2

Recall that the preverify operation writes over the hello2.class file. You can then

issue the run command:

midp -classpath . Hello2

Figure 4.9 illustrates the emulator. Note that, as before, the name of the MIDlet

appears in the title bar of the device screen. As before, the button with the phone

icon to the right of the SELECT button can be clicked to close the emulator.

Creating the Full Package 83

Figure 4.9
Adding a second MIDlet forms a suite.

Creating the Manifest and JAR

Now that you have compiled, preverified, and tested the hello.java and

hello2.java files, you create a Java Archive (JAR) file for them. As mentioned in

Chapter 2, to create a JAR file, you begin by creating a manifest.

J A R F i l e s

A JAR file is an archiving system used to wrap and compress the components of a Java application
package, such as class, image, sound, and other data files. The file format is based on the Zip format,
with a few extras such as a manifest, which contains information on the contents of the JAR.

You can create or modify a JAR file using the jar command-line tool that comes with the JDK.
What’s also cool is that you can manipulate JAR files using the java.util.jar API.

Table 4.3 provides a short list of some useful JAR commands.

As you can see, most commands revolve around the –f argument, which specifies the JAR file to
work on, and the –v argument, which asks for ‘‘verbose’’ output. Combine these with the c, x,
and t switches, and you’ve covered the most common JAR operations.

The manifest file resides in your projects\hello directory. To create the manifest

file, first open a new file in your text editor. Save the file as manifest.txt in the

projects/hello directory. In the file, type the following lines:

MIDlet-Name: MegaHello
MIDlet-Version: 1.0
MIDlet-Vendor: J2ME Game Programming
MIDlet-1: First Hello, ,Hello
MIDlet-2: Second Hello, ,Hello2
MicroEdition-Profile: MIDP-2.0
MicroEdition-Configuration: CLDC-1.1

84 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Table 4.3 Useful JAR Commands

Command Description

jar -cvf my.jar * Creates a new JAR named my.jar, which contains all of
the files in the current directory.

jar -cvfm my.jar manifest.txt * Creates a new JAR named my.jar, which contains all of
the files in the current directory. Also, it creates a manifest
file using the contents of the manifest.txt file.

jar -xvf my.jar * Unpacks all of the files in the my.jar into the current
directory.

jar -tvf my.jar Allows you to view the table of contents for my.jar.

To create the JAR file, open a Command Prompt window and change directories

until you are in the projects/hello directory.

C:\j2me\projects\hello>

To create the JAR file for the suite, issue the following command:

jar -cvfm hellosuite.jar manifest.txt *.class

The basic command is jar. As Table 4.3 discusses, the –cvfm argument creates a

JAR file with all the *.class files in the current directory, along with a manifest

based on the manifest.txt file. The resulting JAR file name is hellosuite.jar.

The manifest file is named manifest.txt. Figure 4.10 illustrates the output of the

JAR-creation activity.

After running the jar command, you can see the compression percentages for the

files. To do so, issue the following command:

jar -tvf hellosuite.jar

Figure 4.11 shows the output you see when you issue the –tvf command.

Creating the Full Package 85

Figure 4.10
Create the JAR file.

Figure 4.11
You see compression and content information as you create the JAR file.

Note that the jar command creates a file named manifest.mf, not manifest.txt.

This is a common point of confusion. The name of the manifest file you supply,

manifest.txt, designates the file that contains information needed to create the

actual manifest, manifest.mf.

Creating the JAD

As mentioned in Chapter 2, after you create a JAR file, you create a corre-

sponding JAD file to represent your suite. To accomplish this, in the same

directory you have been working in to create the JAR file, create a new file named

hellosuite.jad. Most of the lines you include in the JAD file are the same as

those in the JAR file. However, there are a few differences.

For the contents of this file, you need to know the size of the JAR file you have just

created. Accordingly, use the DIR command to view the contents of the pro-

jects\hello directory. Figure 4.12 shows you the directory content thus far. As

Figure 4.12 reveals, the size of the hellosuite.jar file is 1909.

For the text of the hellosuite.jad file, type the following lines. Note that the size

of the JAR file (which appears in bold type) as shown in Figure 4.12 is used.

MIDlet-1: First Hello, ,Hello
MIDlet-2: Second Hello, ,Hello2

86 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Figure 4.12
Obtain the precise JAR file size from the directory list.

MMIDlet-Description: HelloMIDlet
MIDlet-Jar-URL: helloMIDlet.jar
MIDlet-Name: MegaHello
MIDlet-Permissions:
MIDlet-Vendor: home.net
MIDlet-Version: 2.0
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.0
MIDlet-Jar-Size: 1909

In this file, MIDlet-Jar-Size is used to specify the size in bytes of the corre-

sponding JAR file. Additionally, MIDlet-Jar-URL specifies location of the JAR file.

These variables allow the user of the JAR file to see its size and to determine the

site from which to acquire the JAR file. The MIDlet-1 and MIDlet-2 lines identify

the MIDlets you have created. Each appears as a menu item in the emulator.

No t e

The JAD file must be updated each time you alter the files for the MIDlet. If you use an IDE like
NetBeans, much of this activity is automated for you. See the discussion in Chapter 6. For now,
note that it is important to track the size of the JAR files. If you encounter problems with your
builds, check the file sizes you set for JAR size. Discrepancies create build and run problems.

Running the MIDlet Suite Package

At this point, you can use the JAD file to execute the MIDlet suite in the emu-

lator. The result of this activity is that the emulator provides you with an

application in which you can perform a few navigational activities.

To create the MIDlet suite for the two classes you have created thus far, as you

have done before, use a Command Prompt window to work in the projects\hello

directory:

C:\j2me\projects\hello>

Issue the following command:

midp -classpath . -Xdescriptor hellosuite.jad

No t e

Take care with the spaces when entering things on the command line. Mistyping them can
sometimes result in errors. The MIDletSuiteRun.txt file in the Chapter 2 directory provides the
text for this command.

Creating the Full Package 87

You do not compile the JAD file. Instead, you specify only that the JAD file is to

be executed. The emulator loads everything it needs from the JAR file named in

the JAD file. No class files need to be named in the JAD file. Figure 4.13 illustrates

the resulting executable.

As Figure 4.13 illustrates, the Java Application Manager (JAM) presents a list of

the MIDlets available in the suite. To operate the emulator, start with the fol-

lowing steps:

1. Click the up and down arrows on the SELECT button. Notice that the bar

shifts up and down.

2. Position the selection bar on Second Hello. Click in the center of the

SELECT button. The Hello2 class executes. You see the output of the

88 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Figure 4.13
When loading a JAR containing multiple MIDlets, the emulator asks which one to execute.

form.append() method, which is the text message, ‘‘Hello Twice to Micro

World!’’

3. Click the button with the red phone icon to the lower right of the SELECT

button. This restores the full JAM list.

4. Position the selection bar on the First Hello item and click SELECT. The

Hello class executes.

5. Click the On/Off button to exit.

U s i n g a * . b a t F i l e t o R u n You r M ID l e t

The Chapter 4 folder provides you with a Windows/DOS *.bat file (RunTheMIDlet.bat) that gives
you an easy way to execute the JAD file. To use it, just click on it in Windows Explorer (or if you
are using the Command Prompt window, type the name of the file). You can edit the file using
Notepad. To edit it, either you must first open your editor and then open the file using the File
Open menu, or you can use the Command Prompt to navigate to the projects\hello directory and
then type the following command at the prompt:

notepad MIDletSuiteRun.txt

Also, see the note earlier in this chapter on how to move back and forth between the Command
Prompt window and Windows Explorer.

Modifying the JAD

Modify the JAD file so that it redundantly adds classes to the JAM list. Each

shows up as a unique item in the JAM menu. To accomplish this, modify the

hellosuite.jad to add two more lines. Here is how the modified file appears:

MIDlet-Name: MegaHello
MIDlet-Version: 1.0
MIDlet-Vendor: Java ME Game Programming
MIDlet-1: First Hello, ,Hello
MIDlet-2: Second Hello, ,Hello2
MIDlet-3: Third Hello, ,Hello2
MIDlet-4: Fourth Hello, ,Hello
MIDlet-Jar-Size: 1909
MIDlet-Jar-URL: hello.jar

This change does not require that you in any way change the hellosuite.jar file.

Leave that as is. This experiment shows that the JAD file serves to call the

resources named in the JAR file and allows you to designate names for them in

Creating the Full Package 89

the JAM list. This is because the entries within the JAD file always take pre-

cedence over those in the JAR file.

This concludes the grand tour of the J2ME command-line development envir-

onment. In the next chapter, you look at the alternative that Sun’s J2MEWireless

Toolkit offers.

Conclusion
In this chapter, you reviewed how to download and install the JDK 1.6.x and the

MIDP 2.0. You then put these tools to work to create two Java classes forMIDlets.

You used a JAR file to compress the Java *.class files and then developed a JAD file

that allows you to configure a MIDlet suite. The resulting MIDlets allow you to

manipulate basic menu items. The work in this chapter was performed from a

command line and involved only Notepad or a text editor of your choice. This

approach to development lets you glimpse how MIDlets are created from the

ground up. In the next chapter, you continue along the same lines using the Java

Wireless Toolkit, which allows you to automate much of the activity that you

performed manually in this chapter. In Chapter 6, you take yet another step, to

the NetBeans IDE. Whether you adopt a given IDE is your choice. However, the

tools you worked with in this chapter remain in place for this rest of this book.

90 Chapter 4 n The JDK, the MIDP, and a MIDlet Suite

Using the Java Wireless
Toolkit 2.5

In this chapter, you explore the Java Wireless Toolkit (JWT) 2.5, which is an

essential tool for many developers who do not want to adopt a full IDE for MIDlet

development. The virtue of the JavaWireless Toolkit is that it allows you to develop

without having to repeatedly change JAR and JAD files to test your applications.

The Java Wireless Toolkit does the work for you. You need only provide the Java

code. To use the JavaWireless Toolkit 2.5, you require the JDK 1.5.x or higher, and

for this book, you use the Mobile Information Device Profile (MIDP) 2.0 and the

Connected Limited Device Configuration (CLDC) version 1.1. This chapter takes

you through acquisition and installation procedures for the JWT 2.5 and provides

a starter MIDlet, HelloToolkit, to use for initial experiments.

Development Settings
In Chapter 4, Table 4.1 provides a summary view of the two sets of software you

require to develop MID applications in the Java ME setting. These are the Java

Development Kit (JDK) and the Mobile Information Device Profile (MIDP).

This book makes use of the JDK 1.5.x and the MIDP 2.0. Chapter 4 addressed the

acquisition and installation of these items and provided a brief tutorial on

creating a MIDlet suite consisting of two MIDlets. In that setting, you worked

from a Command Prompt window and Notepad, and the primary goal was to

show the commands and development activities involved in developing aMIDlet

from as close to the essentials as possible. Knowledge gained from such experi-

ences remains invaluable in your development efforts.

91

At the same time, if you are a developer who works in a given setting for any

period at all, you begin writing applications or creating scripts that automate

your work. In Chapter 4, for example, a DOS shell script made its way into the

effort almost inevitably. It was much easier to place the JAD run command in a

shell script and then to execute the script than it would have been to repeatedly

retype the command.

In this respect, almost all of the major manufacturers of mobile information

devices (MIDs) have in one way or another offered tools that let developers

develop software for their devices more expeditiously. For several years now, Sun

has offered the Java Wireless Toolkit (JWT) for MIDs, which is the topic of this

chapter. The JWT is what its name implies: a set of tools. It is not a fully deployed

integrated development environment (IDE). More recently introduced and in

another league altogether is the NetBeans IDE, which is discussed in Chapter 6.

Packages in the NetBeans IDE make use of the JWT. Table 5.1 provides essential

information on the WTK (wireless toolkit) and the NetBeans IDE.

92 Chapter 5 n Using the Java Wireless Toolkit 2.5

Table 5.1 Development Tools

The Java Wireless Toolkit 2.5

The Java Wireless Toolkit gives you development tools for mobile devices and networked games. It is
associated with the CLDC, and its current version level is 2.5. It can be incorporated into the NetBeans IDE 5.5
if you upload a mobility package. (This is covered in Chapter 6.) The JWT is a standalone set of tools, however,
and you can at access it at http://java.sun.com/products/sjwtoolkit/download-2_5.html. The
JWT possesses value for developers in a multitude of respects. Perhaps most significantly, it is associated with
Nokia’s Scalable Network Application Package (SNAP), which allows developers to work with the server
software used for multiplayer games. You can find more information on SNAP at http://www.forum
.nokia.com/games/snapmobile. The release levels of the JWT (2.2 and 2.5) that appear in this book
require that you have version 1.5.x or above of the JDK.

NetBeans IDE 5.5

The NetBeans IDE 5.5 is a comprehensive development environment for anything you want to create using
Java. You can readily fold the JWT into it if you install a mobility package for the IDE. Chapter 6 discusses this
activity. The NetBeans IDE allows amuch larger scope of development that the JWT. For starters, it allows you to
use both Java and Cþþ. Using Java, you can develop applets, applications, and MID software by choosing
different NetBeans menu items and working from there. You can also use JUnit for testing, and make use of
other packages for things like XML development. The architecture of the NetBeans IDE is similar in many ways
to the Microsoft Studio IDE, which allows you choose a project type and then makes available a multitude of
tools specific to that type. With MIDs, the two primary project types are CDC and Mobile, which Chapter 6
addresses in more detail. Compilation, testing, documentation, and deployment tools are built in to the IDE,
or if not, then a vast assortment of Internet resources are available. The NetBeans IDE has emerged as one
of the premier development environments for Java developers. To download the NetBeans IDE, access
http://www.netbeans.org. If you are installing version 1.5.0 of Java, then Sun allows you to obtain,
download, and install the NetBeans IDE along with it. The NetBeans IDE requires the JDK 1.5.x or higher.

http://www.forum.nokia.com/games/snapmobile
http://www.forum.nokia.com/games/snapmobile
http://www.netbeans.org
http://java.sun.com/products/sjwtoolkit/download-2_5.html

The Java Wireless Toolkit
To review a few points made in Chapter 2, the CLDC provides definitions of

programming interfaces and a virtual machine (VM) for MIDs. It is the foun-

dation of the MIDP. For this reason, the JWT addresses the CLDC in the same

general way that the MIDP addresses it. The CLDC is the foundation, and the

JWT allows you to work with it. The JWT provides these tools, among others:

n A host of device emulators on which to test your MIDlets.

n An application profiler, which provides facilities to analyze method

execution time and use frequency.

n A memory tool that lets you see your application’s memory use.

n A network monitor, which shows traffic across a simulated network

(including tools to vary the simulated performance).

n Speed emulation tools, which let you adjust the device’s operating perfor-

mance, including slowing bytecode execution.

In this respect, the JWT is a specific set of tools that addresses MIDlet (or MID

programming) concerns. It is not, like NetBeans, an IDE designed to facilitate all

your activities as a Java programmer. On the other hand, because the JWT is a set

of tools, you can work with it independently or fold its capabilities into an IDE

like NetBeans.

Installing the Toolkit

You can download the Toolkit from the Sun website at http://java.sun.com/

products/sjwtoolkit/download-2_5.html. From that page, you can access the

download page depicted in Figure 5.1. The download executable for the JWT 2.5 is

named sun_java_wireless_toolkit-2_5-windows.exe. As I suggested in Chapter 4

for the JDK and the MIDP, it is a good idea to create a downloads directory and to

save installation packages there.

Figure 5.2 provides you with a view of the downloaded files used thus far in this

book, along with the installer file for the JWT 2.5.

To initiate the installation of the JWT 2.5, use the Windows Add or Remove

Programs dialog in the Control Panel. Click Add New Programs and then CD or

Floppy. Navigate to your downloads directory and, after changing the setting for

The Java Wireless Toolkit 93

http://java.sun.com/products/sjwtoolkit/download-2_5.html
http://java.sun.com/products/sjwtoolkit/download-2_5.html

94 Chapter 5 n Using the Java Wireless Toolkit 2.5

Figure 5.2
Java software can be stored temporarily in a downloads directory.

Figure 5.1
From the download page, select the JWT 2.5 for Windows.

file types to All Files, select sun_java_wireless_toolkit-2_5-windows.exe. (An

alternative approach is to navigate to the downloads directory and click on the
�.exe file for the JWT.)

After you initiate the installation, you encounter the JVM Location dialog, shown

in Figure 5.3. This is the first of two locator dialogs you visit during the JWT 2.5

installation. Click the Browse button and navigate to the JDK directory. In

Figure 5.3, this is shown as C:\ProgramFiles\Java\jdk1.6.0_01. The JWT installer

can then verify that you have an appropriate version of the virtual machine. Keep

in mind that the JTW requires the JDK 1.5.0, shown as 5.0 in Figure 5.3.

After you have located the JDK (or VM) in the JVM Location dialog, click Next

to go the Choose Destination Location dialog. This dialog is shown in Figure 5.4.

It identifies the location to which the files constituting the JWT 2.5 can be

written. Use the default location (C:\WTK25) unless you have a specific reason to

prefer another directory. If you choose another directory, make certain that its

The Java Wireless Toolkit 95

Figure 5.3
Install the JWT to the directory in which the JDK is installed.

path and name do not contain spaces. Spaces in the path can generate errors.

Click Next to proceed.

After you designate the JVM and JWT directories, you are asked to designate a

directory in which to place JWT icons. For standard Windows installations, the

Accessories directory is the first default. Use this. Click Next to see the Start

Copying Files dialog. This dialog provides you with a summary of the three

directories the JWT uses. The information the dialog provides appears as follows:

Destination Directory
C:\WTK25

Program Folder
Sun Java(TM) Wireless Toolkit 2.5 for CLDC

JVM Folder
C:\Program Files\Java\jdk1.6.0_01

96 Chapter 5 n Using the Java Wireless Toolkit 2.5

Figure 5.4
Accept the default location for the JWT installation.

The Basic WTK 2.5

After you have installed the JWT, you are ready to begin using it. To follow up on

some of the activity in Chapter 4, it’s possible, for starters, to work with a simple

MIDlet. Select Start>All Programs> Sun Java (TM)Wireless Toolkit for CLDC>
Wireless Toolkit 2.5. You then see the Sun Java (TM) Wireless Toolkit for

CLDC dialog, as shown in Figure 5.5. (The JWT window is often designated the

KToobar. This name is a holdover from previous versions of the JWT.)

From the File menu, select Open Project. You then see a number ofMID software

applications, as shown in Figure 5.6. You can select from among them and run

The Java Wireless Toolkit 97

Figure 5.5
The Sun Java (TM) Wireless Toolkit for CLDC provides you immediate access to testing and development
tools.

Figure 5.6
Select the Games listing and click Open Project.

them in the JWT emulator. Scroll down until you see ‘‘Games . . . Simple suite of

games for the MIDP.’’ Select this listing and click the Open Project button at the

bottom of the window.

After you click the Open Project button, the JWT loads the MIDlet you have

selected, as shown in Figure 5.7. At this point, you can select from a small set of

standard device skins in the Device field’s drop-down list. One is a QWERTY

device. The others represent numbered keyboards. For now, leave the Default-

ColorPhone as the Device field selection. To execute the application and see the

emulator at work, click the Run icon on the toolbar.

After you click the Run icon, the MID phone emulator shown in Figure 5.8

appears. For the Games selection, the Java Application Manager (JAM) shows

three MIDlets, each providing a different game.

To close the emulator, click on the close button on either the window or the

emulator. When the emulator closes, you are back in the main JWT application

window. Notice that the run data for the application is given. At this point,

you can select a different device skin. For example, if you select the QWERTY

skin and click the Run icon, the MIDlet you have selected (Game) generates a

bi-fold device, as shown in Figure 5.9. As before, the JAM displays the MIDlet

suite.

Most of the phone emulators have the same general appearance as those shown in

Chapters 3 and 4. Generally, however, the number of applications available to

you in the Open Project list of the JWT is large. If you are new to device

programming, take some time to load and run them.

98 Chapter 5 n Using the Java Wireless Toolkit 2.5

Figure 5.7
After you select one of the MIDlets from the list, click the Run icon on the toolbar.

Creating a New Project
To create your own MIDlet application, start in the main JWT dialog (the

Ktoolbar) and select File > New Project, or click the New Project icon on the

toolbar. You see the New Project dialog. In the Project Name field, type Hello

Toolkit. In the MIDlet Class Name field, type HelloToolkit again. Figure 5.10

shows the results. Click Create Project.

After you click Create Project in the New Project dialog, you see the API Selection

dialog, which Figure 5.11 shows. In the Target Platform field near the top of the

API Selection dialog, select JTWI. The dialog refreshes, and you see the Profiles

and Configurations labels. Click the button for CLDC 1.1 under Configurations.

Note that under Profiles, the profile is MIDP 2.0. Leave the Additional APIs

checkboxes with their default values. (If you accidentally close the API Selection

dialog, select Project > Settings from the main JWT menu and click the API

Selection icon on the left.)

Creating a New Project 99

Figure 5.8
The phone emulator shows a suite of three MIDlets.

On the right side of the API Selection dialog (Figure 5.11), just beneath the API

Selection icon, is the Required icon. Click the Required icon. The dialog is

refreshed, and you see the table shown in Figure 5.12. At this point, it is not

necessary to do anything with this information. Note, however, that these settings

represent the JAR, JAD, and manifest attributes you saw at work in Chapter 4.

100 Chapter 5 n Using the Java Wireless Toolkit 2.5

Figure 5.10
Name your Project and the MIDlet class.

Figure 5.9
Select QWERTY from the Device drop-down list and click Run, and the Game MIDlet generates a bi-fold
device emulation.

Next, click on the User Defined icon. Figure 5.13 illustrates the resulting view. If

you are accessing the project values for the first time, you see blank Name and

Value fields. The Name and Value pair allow you to set up properties to use for

testing.

In this case, add the Name property and its associated value. To add the property,

click the Add button. The Add Property dialog appears (not shown here). In the

Property Name field of the Add Property dialog, type Message. In the Property

Value field, type Hello World. Click the OK button. The new property and its

associated initial value are added. Note that you can change the name and the

value by activating the fields associated with them. Figure 5.13 shows the User

Defined pane with the Name property and its associated value added. When you

develop the MIDlet later in this chapter, you can retrieve the Value text for

display in the MIDlet. To close the dialog, click the OK button. You again see the

Creating a New Project 101

Figure 5.11
Select the target platform and the MIDP 2.0 and CLDC 1.1.

main JWT window. To develop the code for your MIDlet, proceed to the next

section.

Creating the HelloToolkit Source Code

This section assumes that you have completed the previously described tasks for

the HelloToolkitMIDlet. If you have not done so, return to the previous section

and start there. If you have set up the HelloToolkitMIDlet, then you are ready to

implement the code for it.

When you use the JWT to develop the code for a MIDlet, you do not perform the

same activities that you performed in Chapter 4 when you developed and ran the

hello.java and hello2.java files. More specifically, when you use the JWT, you

build and run a MIDlet without issuing preverify commands or creating

102 Chapter 5 n Using the Java Wireless Toolkit 2.5

Figure 5.12
The Required view confirms the basic profile of your project.

manifest, JAR, and JAD files. Your activities are limited to typing a *.java file and

then placing it in a directory where the JWT can find it.

Before typing the code for the MIDlet, consider that when you use the JWT to

create the HelloToolkit project, the JWT automatically spawns a directory for

the project. Figure 5.14 shows this directory in Windows Explorer. In this figure

you can also see a HelloToolkit.java file. To proceed with your efforts, create

this file. For example, you might use Notepad to save an empty file named

HelloToolkit.java to the apps\src directory in the WTK25 directory structure. As

Figure 5.14 illustrates, the path is C:\WTK25\apps\HelloToolkit\src.

To implement the code for the file, you either type it or access the HellToolkit.

java file in the Chapter 5 source code directory. The HelloToolkit.java code

creates a MIDlet that closely resembles those you worked with in Chapter 4. With

the HelloToolkit code, the only significant difference is that a call is made to the

getAppProperty() method (see comment #1). This method retrieves the value

Creating a New Project 103

Figure 5.13
Click the Add button to add a new property and value pair.

associated with the Message property created in the User Defined dialog. Here is

the code for the class:

/**
* Chapter 5 \ HelloToolkit.java
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class HelloToolkit extends MIDlet
implements CommandListener{

protected Form form;
protected Command quit;

/**
* Constructor for the MIDlet
*/

public HelloToolkit(){
// Create a form and add our components
form = new Form("Hello JWT MIDlet");

// #1 define the message attribute
String msg = getAppProperty("Message");
if (msg != null)

form.append(msg);

104 Chapter 5 n Using the Java Wireless Toolkit 2.5

Figure 5.14
Place your source code file in the src directory, which the JWT spawns for your project.

// Create a way to quit
form.setCommandListener(this);
quit = new Command("Quit", Command.SCREEN, 1);
form.addCommand(quit);

}

/**
* Called by the Application Manager when the MIDlet is starting
*/

protected void startApp() throws MIDletStateChangeException{
// Display the form
Display.getDisplay(this).setCurrent(form);

}

/**
* Called by the MID Application Manager to pause the MIDlet.

*/
protected void pauseApp(){
}

/**
* Called as the MIDlet is destroyed (removed from memory)
*/

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}

/**
* Called when the user executes a command
*/

public void commandAction(Command command, Displayable displayable){
// Check for our quit command and act accordingly
try{

if (command = = quit){
destroyApp(true);
// Tell the Application Manager to exit
notifyDestroyed();

}
}
catch (MIDletStateChangeException me){
}

}
}

Creating a New Project 105

Building and Running HelloToolkit.java

After you have placed the HelloToolkit.java file in the src directory in the JWT25

directory path, you can then build and run the MIDlet it creates. To accomplish

this, in the main JWT window, click the Build icon on the toolbar. If you have

correctly entered the code, you see the following message in the text area:

Project settings saved
Building "HelloToolkit"
Build complete

The build operation automatically runs the preverify command to check the

validity of the syntax of your code. If there are errors, the error report appears in

the text area of the JWT. Figure 5.15 illustrates a Java error message generated by

a missing semicolon at the end of line 16 of the source code.

The JWT makes it convenient to debug your code, even if you are working with

only the most elementary text editor. If you are working with Notepad, for

example, you can use the Alt þ Tab option to switch back and forth.

When the JWT reports that the build is successful, click the Run icon in the JWT

toolbar. You then see the emulator with your MIDlet displayed in the JAM.

Figure 5.16 illustrates the HelloToolkitMIDlet. Click the navigation button at the

top of the keyboard to see the text associated with the Message property displayed.

Note that when you choose the emulator, as Figure 5.17 reveals, useful diagnostic

information appears in the JWT text area.

As an experiment, click the Settings icon of the JWT window. Click the User

Defined icon. Click the Value field that corresponds to the Message property.

Change the text in the Value field to ‘‘Message from home.’’ If you click on the

106 Chapter 5 n Using the Java Wireless Toolkit 2.5

Figure 5.15
The Build process detects a syntax error.

field, it is activated for change. When you finish, click the OK button of the User

Defined view. Now rebuild and run the HelloToolkit MIDlet. Click the navigation

button on the keyboard to see the text newly assigned to the Message property.

Creating a New Project 107

Figure 5.16
The JWT runs the HelloToolkit MIDlet in the emulator.

Figure 5.17
Useful information appears in the toolkit console after executing a MIDlet.

Creating JAD, JAR, and Manifest Files

Once your MIDlet Java file builds and compiles without problems, you can use

the JWT to generate a manifest, a JAR file, and a JAD file. To accomplish this,

select Project > Package > Create Package.

The JWT creates manifest, JAR, and JAD files for you and places them in the bin

directory of your application. You then find them along this path:

C:\WTK25\apps\HelloToolkit\bin

After you have generated the package files, navigate to your bin directory. You

should see the following files:

04/06/2007 04:37 PM 275 HelloToolkit.jad
04/06/2007 04:37 PM 1,310 HelloToolkit.jar
04/06/2007 04:37 PM 198 MANIFEST.MF

Use Notepad to open the HelloToolkit.jad file. The contents are as follows:

MIDlet-1: HelloToolkit, HelloToolkit.png, HelloToolkit
MIDlet-Jar-Size: 1310
MIDlet-Jar-URL: HelloToolkit.jar
MIDlet-Name: HelloToolkit
MIDlet-Vendor: Unknown
MIDlet-Version: 1.0
Message: Hello MIDlet World
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.0

This provides a useful and dependable model for your manifest.txt and JAD

files if you are working from scratch (as you did in Chapter 4).

Ifyouissue the followingcommand, theemulatorruns,but italsogeneratesanerror.

midp -classpath . -Xdescriptor HelloToolkit.jad

The error tells you that the emulator cannot find the HelloToolkit.class file.

You see this error if you click the Select button on the emulator.

To solve this problem, copy the HelloToolkit.class file from the HelloToolkit\

class directory to the HelloToolkit\bin directory.

To test your Message property through the JAD file, change the text as follows for

the Message line:

Message: Hello MIDlet World once again

108 Chapter 5 n Using the Java Wireless Toolkit 2.5

Save and close the JAD file and reissue the MIDP command. The message you see

when you click the Select button reveals that text assigned to the property has

been changed.

JWT Options

A few additional notes regarding the use of the JWT 2.5 might be helpful. First, to

save the output of the build and run actions, you can select File > Save Console.

This action lets you save a text file to the sessions subdirectory of the JTW25

directory. If you select File>Open Project, the Open Project dialog appears, and

as Figure 5.18 indicates, you find your newly created project listed among the

others.

To remove a project from the project list, navigate to the src file and remove the

folder that contains the project. In this instance, for example, you would remove

Creating a New Project 109

Figure 5.18
Your MIDlet project appears in the project list.

HelloToolkit. For now, leave the project as it is so that you can return to it in

subsequent exercises.

Conclusion
In this chapter, you have worked with the Java Wireless Toolkit 2.5. This appli-

cation allows you to test the code in your Java MIDlet files by building and

running the MIDlet. You install the JWT 2.5 application to its own directory, and

as you use it, it generates directories for each project you create. To use the JWT,

you must configure an API Selection dialog to indicate the version of the CLDC

you are using (in this case, version 1.0). As you work toward a more advanced

understanding of MIDlet development, you can make greater use of the config-

uration options. In the User Defined pane of the Settings dialog, you can create

properties that you can then use for testing. The getAppProperty()method allows

you acquire the property through your code for display in the JAM. The JWT 2.5

does not provide a comprehensive IDE, but even if you employ it in conjunction

with a simple text editor, it expedites your development efforts tremendously.

110 Chapter 5 n Using the Java Wireless Toolkit 2.5

Using NetBeans

In this chapter, you explore the NetBeans 5.5 IDE. A summary discussion of

NetBeans was presented in Chapter 5, in Table 5.1. As Table 5.1 indicates, the

NetBeans IDE is an integrated development environment (IDE) for Java devel-

opers. NetBeans is an open source application, so you are not obligated to pay for

it. It executes onWindows, Linux, Mac OS, and Solaris systems, and you can use it

to develop with languages other than Java, notably C and Cþþ. Its default lan-

guage is Java, and you add language packages to it to make it work with other

languages. These packages are free from the NetBeans website (NetBeans.org).

You can also add packages that support mobile device development. Two of these

are especially important in this chapter. One supports basic MID software devel-

opment and is comparable to the Java Wireless Toolkit. The other is a much more

enhanced package that allows you to use a graphical user interface (GUI) to create

device display layouts from scratch. While the focus of this book is on basic MID

software, in this chapter you review how to access, download, and install the

additional packages forMID software development. You alsomake use of a slightly

modified version of the MIDlet code presented in Chapter 5 to develop a MIDlet

using the NetBeans IDE.

The NetBeans IDE
This book is not meant to leave you dependent on any given toolset or IDE.

However, as the discussion in Chapter 5 reveals, the Java Wireless Toolkit pro-

vides a ready way for you to test and refine your JavaMID code without having to

111

112 Chapter 6 n Using NetBeans

repeatedly update manifest, JAR, and JAD files. NetBeans extends this capability

into a comprehensive development setting. With NetBeans, while you have

access to the advantages afforded by the Java Wireless Toolkit, you also have the

support of many project management, configuration, and debugging tools that

cover most of your development activities. If you download the JDK 1.5.x (or the

JDK 1.6.x), you can elect to include the download of the NetBeans IDE and easily

install it from there. After the installation, you are in a position to program,

compile, and run your Java programs without having to perform any config-

uration work at all. A second point is that the documentation for the NetBeans

IDE is comprehensive and easy to access. In many respects it compares well with

the Microsoft Studio IDE and its documentation, which in its Express editions is

also now available at no charge.

To make use of the NetBeans IDE for MID development, you must attend to the

installation of the JDK and MIDP software. Chapters 4 and 5 provide routines to

aid with such activity. This book makes use of the JDK 1.5.x and the MIDP 2.0. It

also documents the NetBeans 5.5 IDE, which requires that you install version

1.5.x or later of the JDK.

The primary advertised features of NetBeans IDE are the following:

n It provides an excellent IDE for Java programmers, and it is certainly the

best such IDE in the open source world.

n For activities involving MID development, it provides a variety of applica-

tions that allow you to develop, test, and deploy MIDlets and MIDlet suites.

n It comprehensively supports web development activities, providing an

extensive set of default components while making it easy to upload many

others from other sources.

n It fully addresses enterprise development efforts involving programming

using such protocols and standards as XML Schema, Web Services

Description Language (WSDL), Business Process Execution Language

(BPEL), and secure web services.

n For modelling and architectural efforts, it provides access to capabilities that

support application development based on Service Oriented Architecture

(SOA).

n It supportsC/Cþþdevelopmenton largely the same level that it supports Java

development and includes capabilities that address memory management.

Installing NetBeans

To download the NetBeans IDE, you have two general options. As previously

noted, if you download version 1.5.x or higher of the JDK, you have the option of

including it with your download. If you have already installed the JDK but do not

yet have the NetBeans IDE, then you can access it at the NetBeans home page at

http://www.netbeans.org.

As Figure 6.1 illustrates, the NetBeans home page gives you immediate access to

both the NetBeans IDE and the primary services or packages associated with the

NetBeans IDE. To download the current version of the NetBeans IDE, click the

Download NetBeans IDE button.

You then see the NetBeans IDE 5.5 download page, as shown in Figure 6.2. To

continue with the download, immediately click one of the mirror links. This

action invokes a File Download dialog. Prior to initiating the download, create a

download directory on your local drive. If you have followed the routines dis-

cussed in Chapter 4 and Chapter 5, you have already created a directory called

downloads.

The NetBeans IDE 113

Figure 6.1
On the download page, click the Download NetBeans IDE button.

http://www.netbeans.org

The name of the installation file for NetBeans 5.5 is netbeans-5_5-windows.exe.

Save this file to your downloads directory. The size of the download is roughly

55 MB for version 5.5. When fully installed, the application takes up approxi-

mately 225 MB.

To start the installation of the NetBeans IDE, use the Windows Add or Remove

Programs dialog in the Control Panel. Click Add New Programs and then CD or

Floppy. Navigate to your downloads directory and, after changing the setting for

file types to All Files, select netbeans-5_5-windows.exe. (Although it is not

recommended, you can also go to your downloads directory and click on the

*.exe file.)

After you initiate the installation program, it provides a dialog that lets you

designate a directory in which to place the NetBeans IDE (see Figure 6.3). By

default on Windows the installer places the application in the Program Files

directory under a subdirectory identifying the current version of NetBeans. If you

have a previous version, the installer does not write over it. You can install

different versions without problems, but they must be in unique directories.

114 Chapter 6 n Using NetBeans

Figure 6.2
Click on a mirror site, and the Download dialog for the NetBeans IDE appears.

After you designate the target directory, you select the version of the JDK that

you want to use with the NetBeans IDE. As Figure 6.4 illustrates, the version used

for this book is 1.6.0_01. NetBeans readily works with version 1.4.x, but 1.5.x is

necessary for use with the mobile software discussed in this book. If you have

version 1.5.x of the JDK installed, you should not have any problems with the

The NetBeans IDE 115

Figure 6.3
The IDE installs to a unique directory.

Figure 6.4
For the projects in this book, select JDK version 1.5.x or greater.

software in this book, but keep inmind that the software has been developed with

the version shown in Figure 6.4.

After you select the version of the JDK you want to associate with your instal-

lation of the NetBeans IDE, click Next. The installation proceeds from there, and

when it concludes, you can go directly to the Start menu to test a Java program.

At this point, you have a few more tasks to perform before you can develop

MIDlets using the NetBeans IDE. Subsequent sections of this chapter detail how

you download the packages for the IDE you require to equip it to facilitate your

MIDlet development efforts.

Sanity Check the IDE

To verify that you have correctly installed the NetBeans IDE, select Start > All

Programs>NetBeans 5.5 and open the NetBeans IDE. Figure 6.5 illustrates your

116 Chapter 6 n Using NetBeans

Figure 6.5
Confirm that your installation of the NetBeans IDE was successful.

first view of the application. A starter project, Hello World App, is set up for you,

and as you might expect, a HelloWorldApp class is the main class in the project.

This class is ready to compile and run. Here are a few starter points:

n In the Chapter 6 code folder is a project called HelloWorldApp. To open

this project, select File > Open Project. Navigate to Chapter6MIDlets.

Open the folder and click on HelloWorldApp. Then click on Open

Project Folder.

n Notice in Figure 6.5 that the Files tab has been clicked and that the path to

the HelloWorldApp.java file has been opened. Also, a word has been added

to the standard Hello World! output in the println() method (‘‘Hello

NetBeans World!’’). The lower pane on the left profiles the class, revealing

the class constructor and the main() function. If you double-click an item,

the cursor moves to the appropriate line. This way, you can easily change

your own starter message.

n To build projects, select Build > Build Main Project, or press F11.

n To run the program, select Run > Main Project, or press F6.

n To invoke the debugger only, select Run > Debug Main Project,

or press F5.

The NetBeans IDE provides hundreds of services that supplement your devel-

opment activities. Specific discussion of these lies outside the scope of the current

chapter, but an effort is made to review those that are essential to MIDlet

development.

A couple of other items might prove interesting as starter activities:

n Notice that after you build the application (press F11), the Output window

tells you that the IDE has generated a JAR file for the HelloWorldApp class. As

an experiment, you can copy the given command to the Command Prompt

window and execute the JAR file from there.

java -jar "C:\Documents and Settings\Hello World
App\dist\Hello_World_App.jar"

n If you want to access starter information about the IDE, select Help>Quick

Start Guide. This tutorial shows you how to set up HelloWorldApp for

yourself.

The NetBeans IDE 117

Adding Mobility
After you have installed the NetBeans IDE, you can add two supplemental

packages to fully equip yourself to work with MID programs. This book does not

make full use of both, but it is worthwhile to install them now. The two packages

you install are as follows:

n Basic Mobility Package. This package is associated with an executable

named netbeans-mobility-5_5-win.exe. In the NetBeans download page, as

shown in Figure 6.6, click the NetBeans Mobility 5.5 Installer link. Mobility

is a primary package that equips the IDE with some services similar to those

provided by the Java Wireless Toolkit. You require this package if you want

to see the Mobility folder when you select Project > New in the NetBeans

Project options.

n CDC Mobility Package. This package is associated with an executable

named netbeans-cdc-5_5-win.exe. In the download page, as shown in

Figure 6.7, click the NetBeans Mobility CDC Pack 5.5 Installer link. This

is an extremely powerful package that allows you to develop almost any

118 Chapter 6 n Using NetBeans

Figure 6.6
Navigate to the download page.

type of MID application you can name. Its full capabilities lie beyond the

scope of this book. You require this package if you want to see the CDC

option when you select Project > New.

After you complete your installation of the mobility packages, you can carry out

the activities this book describes without needing to further configure the Net-

Beans IDE.

No t e

For other platforms, however, additional installations are necessary. For example, special packages
are available for Sony Ericsson and Nokia. These installation activities lie beyond the scope of this
book, as do development activities geared specifically toward such platforms.

Downloading Mobility Packages

Asmentioned in the previous section, you download two packages that allow you

to work with MID software development using the NetBeans IDE. These

Adding Mobility 119

Figure 6.7
Start with the CDC package and click the package link before the mirror link.

packages are often referred to as mobility packages. To access the NetBeans

mobility packages, go to the NetBeans Internet site: http://www.netbeans.org.

In the NetBeans page, you see a Mobility Pack link. Click this. It takes you to the

main Mobility Pack page. In the main Mobility Pack page (not pictured), click

the button labeled Download NetBeansMobility Pack for CDC. This takes you to

a page titled NetBeans Mobility Pack 5.5 Download, as shown in Figure 6.6.

Click the Download NetBeans Mobility Pack button pictured in Figure 6.6. This

takes you to the download page shown in Figure 6.7. You then see a page with a

number of mirror links. Observe that in the lower part of the page there are two

packages associated with MID development. As Figure 6.7 illustrates, these are the

NetBeans Mobility 5.5 Installer and the NetBeans Mobility CDC Pack 5.5 Installer.

To start, download the mobility package that includes CDC in the title. This is

the larger of the two packages. To initiate the download, first click the download

link for the CDC package; the page refreshes. Then click one of the mirror links.

Note that the links refresh according to the download link you click, so do not

click one of the mirror links without first clicking the download link for the

package you want to access.

When the File Download dialog appears, you see netbeans-cdc-5_5-win.exe (or

the executable for the version current for you). Click the Save option and save the

file to your downloads directory. The size of the file is approximately 40 MB.

Now return to the NetBeans download page (as shown in Figure 6.7) and click

the download link for the NetBeans Mobility 5.5 Installer. Remember to click the

download link before clicking the mirror site link. When the File Download

dialog appears, you should see the netbeans-mobility-5_5-win.exe (or the

executable for the version current for you). Click the Save option and save the file

to your downloads directory. The size of the file is approximately 25 MB.

Installing the CDC Mobility Package

The installation of the mobility packages require that you first install the JDK 1.5.x

or higher and NetBeans 5.5 or higher. If you have not done so, revisit the start of

this chapter and Chapter 4 for instructions on how to install these two items.

To install the CDC mobility packages, use the Windows Add or Remove Programs

dialog in the Control Panel. Click Add New Programs and then CD or Floppy.

Navigate to your downloads directory and, after changing the setting for file

120 Chapter 6 n Using NetBeans

http://www.netbeans.org

types to All Files, select the netbeans-cdc-5_5-win.exe. (Although it is not

recommended, you can also go to your downloads directory and click on the *.exe

file.)

As Figure 6.8 illustrates, after you initiate the installation of the NetBeans

Mobility Pack 5.5 for CDC, the installer allows you to associate a version of

NetBeans with your mobility package. Any version that is 5.5 or greater is suitable.

Choose a version and click Next.

In the next dialog, the installer allows you to associate the mobility package with

a version of the JDK. Any version that is 1.5.x or greater is suitable. Choose your

version and then click Next. You see a dialog that identifies the path of a currently

installed JDK, as Figure 6.9 illustrates.

You then see the statistics on the installation. The NetBeans Mobility Pack 5.5 for

CDC requires around 140 MB of memory. The default installation location is

C:\Program Files\netbeans-5.5\cdc2. Click Next to initiate the file installation

process. When the installation completes, click Finish in the dialog that appears.

Installing the Basic Mobility Package

Before you can install the basic mobility package, you must have installed the

JDK 1.5.x or higher and NetBeans 5.5 or higher. If you have not done so, revisit

Adding Mobility 121

Figure 6.8
Associate the mobility package with a version of NetBeans.

the start of this chapter and Chapter 4. At this point, it is also assumed that you

have downloaded the basic mobility package and installed the CDC mobility

package. If you have not done so, revisit the previous section.

To install the basic mobility package, you can use the Windows Add or Remove

Programs dialog, or you can go to your downloads directory and click on the

*.exe file. Generally, it is recommended that you install through the Add or

Remove Programs dialog. Select the netbeans-mobility-5_5-win.exe file for

installation.

Like the CDC mobility package, the basic mobility package’s installation pro-

gram first allows you to associate the package with a version of the JDK and a

version of NetBeans. Associate the basic mobility package with the same versions

you selected for the CDC mobility package. The JDK must be version 1.5.x or

greater. The version of NetBeans must be 5.5 or greater. As Figure 6.10 illustrates,

the package is installed to the Program Files directory. The size of the package is

approximately 40 MB. Proceed to the final dialog of the installation. Click Finish

in the final dialog to conclude the installation.

Confirming Mobile and CDC

After you have installed the basic mobility and the CDC mobility packages, open

the NetBeans IDE. Select File>New Project. In the New Project window, shown

122 Chapter 6 n Using NetBeans

Figure 6.9
Associate the mobility package with a version of the JDK.

in Figure 6.11, you see folders for CDC and Mobile. Mobile represents the basic

package. CDC represents the CDC package. The presence of these two folders

(project types) indicates that your installations have been successfully completed.

You can now proceed to create a MIDlet.

Adding Mobility 123

Figure 6.10
The basic mobility package is smaller than the CDC package.

Figure 6.11
The Mobile and CDC folders are added with your installation of the two mobile packages.

Creating a MIDlet Project
To create a MIDlet, open the NetBeans IDE. Close any files that might be open in

the IDE. Then choose File > New Project.

You see the New Project Dialog, as shown previously in Figure 6.11. In the

Categories pane of the New Projects dialog, click the Mobile folder.

In the Projects pane of the New Project dialog, you see several types of project. In

this instance, click Mobile Application. Then click Next. You then see the Name

and Location dialog, as shown in Figure 6.12.

For the Project Name field, type HelloNetBeansMIDlet. For the Project Location

field, click Browse and select the projects folder under the J2ME directory you

created in Chapter 3: C:\j2me\projects.

For the Set as Main Project checkbox (as shown in Figure 6.12), check the

checkbox. For the Create Hello MIDlet checkbox, uncheck the checkbox. Now

click Next.

No t e

For reference, you can find a HelloNetBeansMIDlet in the Chapter 6 code folder.

124 Chapter 6 n Using NetBeans

Figure 6.12
Populate the Name and Location fields.

Figure 6.13 reveals the Default Platform Selection dialog you see next. If you

worked through Chapter 5, you might immediately notice that the version of the

Java Wireless Toolkit you see is not version 2.5. The version you see depends on

what has been used with the NetBeans mobility packages. In this case, for

example, the version level is 2.2. Leave the Emulator Platform as is. For the

Devices setting, select DefaultColorPhone. For the Device Configuration, select

CLDC-1.1. For the Device Profile, select MIDP-2.0. With the exception of the

version level for the JWT, these settings are the same as those you used for the

Java Wireless Toolkit emulation in Chapter 5. Click Finish.

If you now click on the Files tab in the pane on the left side of the IDE window,

you see that the HelloNetBeansMIDlet project has been created (see Figure 6.14).

Likewise, if you access Windows Explorer, you see that subdirectories have now

been set up in the J2ME path in a project directory called HelloNetBeansMIDlet.

The subdirectories correspond to the folders shown in the left pane in Figure 6.14.

In the directory tree in the left pane of the NetBeans IDE window, right-click the

HelloNetBeansMIDlet folder. You see a pop-up menu, as shown in Figure 6.15.

Select New > File\Folder

Next you see the Choose File Type dialog, as shown in Figure 6.16. This dialog

resembles the New Project folder, but the two panes are now titled Category and

Creating a MIDlet Project 125

Figure 6.13
Accept the default version of the emulator and verify the Configuration and Profile settings.

File Type instead of Category and Project Type. Under Category, click the MIDP

folder. Under File Type, click MIDlet. Then click Next.

You now see the New File dialog. In the MIDlet Name field, type Hello-

NetBeansMIDlet. As shown in Figure 6.17, the IDE automatically populates the

MIDlet Class Name field for you with the same name. Click Finish.

126 Chapter 6 n Using NetBeans

Figure 6.14
The NetBeans IDE provides you with standard project and file panes.

Figure 6.15
Create a new folder for the project.

The NetBeans IDE now creates the HelloNetBeansMIDlet.java file, as Figure 6.18

shows. To locate the file, click the src folder in the left pane of the IDE.When you

click on the file name, you see a profile of its methods in the Navigator pane. If

you save the code in the file, you see that it provides basic MIDlet methods, a

constructor, and essential import statements.

Creating a MIDlet Project 127

Figure 6.16
Select MIDP and MIDlet.

Figure 6.17
Type the name of the MIDlet.

As useful as the code the IDE generates might be, the next step in this instance is to

delete it and add the code from a previous exercise. Proceed to the next section.

Adding Code
Tocreate aMIDlet, access the Starter_Code.txtfile in theChapter 6 code folder. To

accomplish this, select File>Open File from the main menu of the NetBeans IDE.

Navigate to the Chapter 6 HelloNetBeansMIDlet\src folder. Open the Starter_

Code.txt file. This file is largely the same file you worked with in Chapter 5.

Now, working in the NetBeans editor, use Ctrl þ A to select the contents of the

Starter_Code.txt file. Press Ctrl þ C to copy the contents. Then return to the

HelloNetBeansMIDlet.java file and use Ctrl þ V to paste the contents into it.

When you finish, close the Starter_Code.txt file by clicking the x on the file tab

at the top of the IDE edit area.

No t e

As a precaution, do not try to copy a *.java file into the src directory of your NetBeans project and
then make it compile as a part of the product. NetBeans does not yet support such activity. You
must use the New > File/Folder or File > New File options to add a new file to a project. Use the
menu options to add a file of the appropriate name. After that, delete the contents of the new file
and copy the contents from the source file into it.

128 Chapter 6 n Using NetBeans

Figure 6.18
The IDE creates the shell of the new class.

While the code for HelloNetBeansMIDlet.java is largely the same as the code you

worked with in Chapter 5, there are a few differences. At comment #1, an

attribute of the String type (msg) is declared. Following comment #2, the con-

structor of the String class is used to create an instance of the String class, which

is assigned to the msg attribute. In the next line, the Form::append() method is

called so that you can see the text assigned to the msg displayed by the MIDlet.

No t e

Beginning in Chapter 9, such classes as Form, Command, and String are dealt with in greater
detail. For now, the task focuses on demonstrating the use of NetBeans. For this reason, com-
ments in the code and elsewhere are kept to a minimum.

Here is the code for the HelloNetBeansMIDlet.java file. You can find this file in

the Chapter 6 HelloNetBeans project folder, along with the Starter_Code.txt file:

/*
* Chapter 6 \ HelloNetBeansMIDlet.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class HelloNetBeansMIDlet extends MIDlet
implements CommandListener{

// Attributes to display the message
protected Form form;
// process the Quit command
protected Command quit;
// #1 Process the message written to the Form (display)
protected String msg;

public HelloNetBeansMIDlet(){
form = new Form("Hello NetBeans MIDlet");

// #2 Assign a value -- change to experiment
msg = new String("NetBeans is at Work!");

// Write to the display
form.append(msg);

Adding Code 129

// Calls to register the Quit command
form.setCommandListener(this);
quit = new Command("Quit", Command.SCREEN, 1);
form.addCommand(quit);

}
//End of constructor

protected void startApp() throws MIDletStateChangeException{
// Display the form
Display.getDisplay(this).setCurrent(form);

}

protected void pauseApp(){
}

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}

public void commandAction(Command command, Displayable displayable)
{

// Check for the quit command and act accordingly
try{

if (command = = quit){
destroyApp(true);
// Tell the Application Manager to exit
notifyDestroyed();

}
}
catch (MIDletStateChangeException me){
}

}
}

After you have typed or copied the code into the edit area of the IDE, press F11 to

build the project. To run the MIDlet, press F6.

Figure 6.19 illustrates the output of the MIDlet you create with the Hello-

NetBeans.java file. To operate the MIDlet, click the SELECT button. To quit the

MIDlet, click the soft button beneath click. (You can also press F2 or F1 for the

soft keys.) The text assigned to the msg attribute is displayed. To experiment,

130 Chapter 6 n Using NetBeans

change the text message (see the line following comment #2). Rebuild the project

by pressing F11 as you make your changes. To debug your code, right-click on

the name of the file in the Projects pane and select Compile File.

The JAD and JAR Files
Recall from Chapter 5 that the Message property was defined in the dialog that

corresponded to the JAD file in the JWT interface. The getAppProperty()

method retrieved the defined value. By changing your code and a line in the

JAD file for your NetBeans MIDlet, you can restore the getAppProperty()

method to your source code and again see the effect of processing the Message

property.

The NetBeans IDE incorporates the functionality of the Java Wireless Toolkit

(JWT), and just as the JWT generated JAR and JAD files, the NetBeans IDE also

The JAD and JAR Files 131

Figure 6.19
The emulator is invoked, and you see your MIDlet.

generates such files. To locate these files, first Select Window > Files from the

main menu of the NetBeans IDE. You then see the JAR and JAD files. Click the

dist folder, as shown in Figure 6.20. Click the JAD file. You see the contents of

the HelloNetBeansMIDlet.jad file displayed in the NetBeans edit window.

As the text of the HelloNetBeansMIDlet.jad file shown in Figure 6.20 reveals, the

Property-Value pair that establishes the Message property you used in Chapter 5

is missing from the JAD file. To make it so that a message you provide from the

JAD file appears, you can make a few modifications to the file. The next section

guides you through this activity. Close HelloNetBeansMIDlet.jad. Proceed to the

next section before changing the JAD file.

Adding the Message

At this point, you can alter the code so that it can accommodate a message.

To perform this task, begin by making a backup copy of the code in your

HelloNetBeansMIDlet.java file. To accomplish this, select Window > Files so

132 Chapter 6 n Using NetBeans

Figure 6.20
The IDE generates JAD and JAR files by using the JWT capabilities.

that you see the File pane of the HelloNetBeansMIDlet project. Then right-click

on the name of the project at the top of the File pane. Select New Empty File. In

the New Empty File dialog, type HelloNetBeansMIDlet.txt. Verify that you have

included the txt file extension. Click Finish.

A file named HelloNetBeansMIDlet.txt appears in the edit pane. If the File pane

vanishes, click on it in the left margin of the IDE to restore it. Click Hello

NetBeansMIDlet.java under the src folder and select its contents using Ctrl þ A

and then Ctrlþ C to copy. Then use Ctrlþ V to paste the contents of the source

file into HelloNetBeansMIDlet.txt.

Having made a backup, modify the code in HelloNetBeansMIDlet.java so that

beginning at comment #1 it reads as follows:

// #1 And process the message written to the Form (display)
protected String msg;
public HelloNetBeansMIDlet()
{

form = new Form("Hello NetBeans MIDlet");

// #2 Assign a default value
msg = new String("NetBeans is at Work!");
form.append(msg);

// Assign a new one if there is one there to assign
msg = getAppProperty("Message");
if(msg != null){

//Remove the default message
form.deleteAll();
//Display the Message value from the JAD file
form.append(msg);

}
}
//End of constructor

Build and run your project to verify that your code contains no errors. The goal

now is to edit the JAD file the project has generated.

No t e

The alternative code is provided in the ‘‘Constructor with Message.txt’’ file in the Hello-

NetBeansMIDlet src folder in the Chapter 6 source directory.

The JAD and JAR Files 133

Changing the JAD File

The NetBeans IDE creates difficulties if you try to edit a JAD file. For this reason,

luse Windows Explorer to locate the C:\j2me\projects\HelloNetBeansMIDlet\dist

directory. You find the JAD and JAR files there. Use Notepad, not the NetBeans

editor, to open the HelloNetBeansMIDlet.jad file. Modify it by adding one ine for

the Message property. The new text you add is shown in bold:

MIDlet-1: HelloNetBeansMIDlet, , HelloNetBeansMIDlet
MIDlet-Jar-Size: 1547
MIDlet-Jar-URL: HelloNetBeansMIDlet.jar
MIDlet-Name: HelloNetBeansMIDlet
MIDlet-Vendor: Vendor
MIDlet-Version: 1.0
Message: This is a new message
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.0

Save but do not close the JAD file.

Now use Windows Explorer to open the preverified folder of your NetBeans

project. The project path is HelloNetBeansMIDlet\build\preverified. In this

folder, you find the version of the HelloNetBeansMIDlet.class file that the pre-

verify command has generated. Copy this file to the dist directory:

C:\j2me\projects\HelloNetBeansMIDlet\dist

Now navigate to the dist directory using the Command Prompt. (To accomplish

this, use the routine described in the sidebar, ‘‘Drag and Drop Navigation.’’)

After you have navigated to the dist directory, your prompt reads as follows:

C:\j2me\projects\HelloNetBeansMIDlet\dist>

Issue the following command:

midp -classpath . -Xdescriptor HelloNetBeansMIDlet.jad

The emulator starts, and you can click the Select button to see the value assigned

to the Message property, as shown in Figure 6.21. You now have a number of

windows open, so you can easily move back and forth to change the values in the

JAD file if you want to continue to experiment.

134 Chapter 6 n Using NetBeans

No t e

When NetBeans builds your MIDlet, it erases the changes you make to the JAD file.

D r a g a n d D r o p N a v i g a t i o n

To make it easier to work with some of the obscure directory paths you deal with in this chapter,
open a Command Prompt and Windows Explorer, as shown in Figure 6.22. In the Command
Prompt window, type CD at the prompt. Type a space afterward. Click on the name of the directory
that contains the file in Windows Explorer. Drag it and drop it into the Command Prompt window.
Press Return.

The JAD and JAR Files 135

Figure 6.21
Alter the JAD file to see changing values of the Message property.

Conclusion
In this chapter, you downloaded and installed the NetBeans IDE 5.5. You then

downloaded and installed the NetBeans Mobility 5.5 Installer and the NetBeans

Mobility CDC Pack 5.5 Installer. These two packages provide you with

comprehensive capabilities for developing mobile device software in the Net-

Beans IDE. Using these packages, you then created a project for a MIDlet and a

Java file to define the MIDlet. You replaced the code automatically generated for

the MIDlet with code taken largely from the project discussed in Chapter 5.

Using the work previously completed with the Java Wireless Toolkit, you have

been able to explore how the NetBeans IDE can facilitate your MID software

development efforts. You can now see that the work of the JWT is included in

the NetBeans mobility packages. The different versions of the JWT in this and the

previous chapter present no problems with the code being used. The code was

originally compiled with one version of the JWT. When you move to another

version, such as the 2.2 version, you see a different emulator. From this point, the

prospect opens to include examination of the classes and algorithms involved in

developing MID game software.

136 Chapter 6 n Using NetBeans

Figure 6.22
To make it easier to navigate, drag and drop.

Text-Oriented Activities

This page intentionally left blank

Java ME API Basics

This chapter introduces you to the implementation of the classes and interfaces

in the MIDP and CLDC packages. It is the first of four chapters that deal with the

classes and interfaces on a general level. Depending on your approach to this

book, you might use the next four chapters for reference only. However, they

provide short programs intended to introduce the basics of using the classes and

interfaces, so exploring these chapters might be effective preparation for the

activities in Chapter 11, which focuses on the specifics of game development. In

the current chapter, you investigate the MIDP application programming inter-

face, which can be understood as the overall collection of classes and interfaces

you access as you create MIDlets. In this chapter, the focus is on the classes and

methods that support the basic lifecycle of the MIDlet, the classes that support

thread or timer use, and the classes that provide networking capabilities. In

subsequent chapters, other aspects of the API are examined.

MIDP API Overview
When you use the MIDP, you access its application programming interface

(API). As used in this book, the API consists of the public methods the classes in

the MIDP offers. Some of these classes and methods have appeared in previous

chapters. In this and the next few chapters, the goal is to examine them much more

139

closely. Table 7.1 provides a review of the MIDP with respect to the general

categories of its functionality. The largest set of functionality is in the User

Interface (UI) classes. These are often referred to under the heading of Liquid

Crystal Display User Interface (LCDUI). In addition to the LCDUI classes, the

networking interfaces are of central importance, as are those related to threads

and timing.

The MIDlet Class
When you develop a MIDlet, you extend the class you create for your MIDlet

from the MIDlet class, which you can find in the javax.microedition.midlet

package. It is an abstract class, and in previous chapters you have seen several

examples of how to extend classes from it. It provides what is generally referred to

as a ‘‘profile’’ application, which means that while it supplies the basic services

that characterize aMIDlet, youmust implement the control mechanisms relating

to the specific device you are working with. Profile services include those

necessary for the MIDlet to start, pause, resume, and stop. Table 7.2 provides a

list of the methods that supply these services.

As the descriptions in Table 7.2 indicate, the methods of the MIDlet class interact

heavily with the application management software. The application management

software initiates many of the actions to which the methods respond, but it is also

the case that the methods allow you to initiate actions that are directed to the

140 Chapter 7 n Java ME API Basics

Table 7.1 MIDP API Support

Section Description*

Application Classes in this collection support devices so that they can run multiple MIDlets.

Utilities Includes the essential Timer and TimerTask classes, in addition to such things as
the Stack, Vector, Calendar, and Random classes.

Networking Provides support for connectivity, sockets, HTTP connectivity, and streams.

Persistence Allows you to store and retrieve data. Its functionality centers on the Record
Management System (RMS), a basic database.

Audio Includes a variety of classes that address the playing and listening of audio.

Gaming Provides classes for tiling, layer management, canvas development, and sprites.

User Interface The largest collection of classes. It covers images, data, screen management, text
display, font, groups, and a number of other UI items.

* See http://java.sun.com/javame/reference/apis/jsr118/ for a comprehensive review of the packages that constitute the
API of the MIDP.

http://java.sun.com/javame/reference/apis/jsr118/

application management software. The interaction is in both directions and

continuous. What applies to the methods of the MIDlet class applies to most of

the classes that constitute the API as represented in Table 7.1.

No t e

The API classes use standard methods inherited from the Object class. The methods used are as
follows: equals(), getClass(), hashCode(), notify(), notifyAll(), toString(), wait().

As I mentioned, you can view the lifecycle of a MIDlet in fairly basic terms

and trace its actions back to the methods listed in Table 7.2. As Figure 7.1 shows,

the lifecycle of the MIDlet begins with its construction. After it is constructed,

it is automatically placed in a paused state by the application management

software. The startApp() method can then be called to set the MIDlet in a

running state. After it is running, it can be paused. This can happen if the user of

a device switches to another MIDlet. If an application is paused, it can be

restarted once again with the startApp() method. On the other hand, the user

might close it, in which case the destroyApp() method is called. Other methods,

such as notifyPaused() and notifyDestroyed(), supplement these efforts.

The MIDlet Class 141

Table 7.2 MIDlet Methods

Method Description

String getAppProperty(String key) Returns the property value associated with the string key
in the JAR or JAD.

abstract void destroyApp() Gives you a chance to attend to actions such as saving
state and releasing resources before your application
closes. The argument to this method is of the Boolean
type and is identified as unconditional. An unconditional
Boolean value always generates an action. If it is true,
the MIDlet cleans up and releases its resources. If it is
false, the MIDlet throws an exception of the MIDlet-
StateChangeException type to temporarily forestall
its destruction.

abstract void pauseApp() Calls on the MIDlet when the user has paused the game.

abstract void startApp() Signals that the user wants the game to start again.

abstract void notifyDestroyed() Informs the application management software that the
player has decided to exit the game.

abstract void notifyPaused() Tells the application management software that the player
has paused the MIDlet.

abstract void resumeRequest() Tells the application management software that the
MIDlet is to be started again after being paused.

When it is running, a MIDlet can be paused at any time, and when this happens,

the application management software immediately calls the pauseApp() method.

Consider two applications, A and B. If the user pauses application A and switches

to application B, then the pauseApp() method is called for A and the startApp()

method is called for B. When the pauseApp() method is called, resources for

application A are released. When the user wants to start application A again, the

application management software calls the startApp() method for A and the

pauseApp()method for application B, and resources are released for application B.

Destruction of a MIDlet works the same way. For example, if the user elects to

close application A, then the application management software invokes the

destroyApp() method for application A. With the destroyApp() method, the

MIDletStateChangeException class comes into play. This exception indicates that

an attempt has been made to close the application but that some of the resources

for the application have not been released, thus blocking a clean exit.

P r o j e c t s w i t h N e t B e a n s

The programs in this and subsequent chapters have been developed using the NetBeans IDE. For
this reason, you find a NetBeans subfolder in the source directory for Chapter 7 and subsequent
chapters of this book. Chapter 6 describes how to get started with the NetBeans IDE.

142 Chapter 7 n Java ME API Basics

Figure 7.1
Interactions with the user and the application management software characterize the MIDlet lifecycle.

If you do not want to use NetBeans, the code folders provide duplicate code files that you can
copy and work with from the command line or using the Java Wireless Toolkit. For help working
with these files in these contexts, review the discussions provided in Chapters 4 and 5.

To access the NetBeans projects provided with this chapter, from the main menu of the NetBeans
IDE, select Project > Open Projects and navigate to the directory location where you copied the
Chapter 7 code samples. You can find this project in the NetBeans subfolder. Click the Chapter 7
MIDlets selection in the Open Projects dialog. Then click Open Project Folder. At this point, you
can build (F11) and run (F6) the MIDlets in the project.

If you want to create your own project, follow the directions given in Chapter 6 for creating a
MIDlet project. Then, to add files, select File > New File. In the New File dialog, click MIDP under
the Categories label. Click MIDlet under the Files Types label. Then Click Next.

In the New File dialog, type the name of the class (LifecycleTest, for example). Then click
Finish. At this point, you see the default starter code for the class you have created. Delete the
automatically generated code and copy and paste the code from the appropriate example file into
the text area for the class.

You can include several MIDlet classes in any given project. When the IDE builds and runs them,
they are displayed in a typical device list in the emulator, as Figure 7.2 illustrates. Use the SELECT
key to navigate through the list.

The LifecycleTest Class

The LifecycleTest class is located in the Chapter 7 code folder. See the sidebar,

‘‘Projects with NetBeans,’’ for a discussion of how to access and run it. The

LifecycleTest class illustrates the actions of some of the methods in the MIDlet

class. Among these are the constructor, and the startApp(), destroyApp(), and

notifyDestroyed() methods. The pauseApp() method is also shown, but in this

case you see no output from it. In addition, the LifecycleTest class explores the

CommandListener:: commandAction() method. Here is the code for the Life-

cycleTest class. Discussion of the LifecycleTest class follows with references to

the numbers (#1 for example) that appear in the code.

/*
* Chapter 7 \ LifecycleTest.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class LifecycleTest extends MIDlet
implements CommandListener{

The MIDlet Class 143

private Form form;
private Command quit;
private boolean forceExit = false;
//Test attributes to show values as they are generated
private static int countStart,

constructApp,
destroyApp;

144 Chapter 7 n Java ME API Basics

Figure 7.2
The NetBeans IDE allows you to use a single project for the files in a given chapter.

// #1 Construct the MIDlet
public LifecycleTest(){

System.out.println("The constructor is called: " + constructApp++);
form = new Form("Basic MIDlet Lifecycle.");
form.append("The MIDlet starts and waits.");
form.setCommandListener(this);
// Create and add a command to close the MIDlet state
quit = new Command("Quit", Command.SCREEN, 1);
form.addCommand(quit);

}

// #2 Called by the application management software to start
protected void startApp() throws MIDletStateChangeException{

System.out.println("Select clicked. The startApp() method is called: "
+ countStart++);

Display.getDisplay(this).setCurrent(form);
}

// #3 Called by the application management software to pause
protected void pauseApp(){

System.out.println("pauseApp() called.");
}

// # 4 Called by the application management software to destroy
protected void destroyApp(boolean unconditional)

throws MIDletStateChangeException{
System.out.println("The destroyApp(" + unconditional

+ ") method is called: " + destroyApp++);

if (!unconditional){
// Once using unconditional, next time forced.
forceExit = true;

}
}

// #5 Called when the user executed a command
public void commandAction(Command command, Displayable displayable){

System.out.println("commandAction(" + command + ", " + displayable +
") called.");

try{
if (command == quit){

destroyApp(forceExit);
notifyDestroyed();

The MIDlet Class 145

}
}

catch (MIDletStateChangeException me){
System.out.println(me + " caught.");

}
}

}

Figure 7.3 reviews the primary actions the LifecycleTest class supports. The

SELECT button invokes the constructor and the startApp() method of the class.

The disconnect phone button to the lower right of the SELECT button invokes

the destroyApp() method. You can repeatedly construct and destroy objects

of the class to see the output of the methods in it.

Run the application and click the SELECT and disconnect buttons, as shown in

Figure 7.3. You invoke the constructor for the class object, the startApp()

method, and then the destroyApp() method. Subsequent sections of this chapter

discuss the code in detail. The output shown is generated by the NetBeans IDE:

Copying 1 file to C:\j2me\projects\Chapter7MIDlets\dist\nbrun#30652
Starting emulator in execution mode
Running with storage root DefaultColorPhone
The constructor is called: 0
Select clicked. The startApp() method is called:0
The destroyApp(true) method is called: 0
The constructor is called: 1
Select clicked. The startApp() method is called:1
The destroyApp(true) method is called: 1
The constructor is called: 2
Select clicked. The startApp() method is called: 2
The destroyApp(true) method is called: 2
Execution completed.

Imports and Construction

Consider first the lines preceding comment #1 in the definition of the

LifecycleTest class. You see the import directives that are needed in order to

include the basic MIDP classes. You have seen these before, but notice in this

context the midlet and lcdui packages. As mentioned previously, the midlet

package allows you to define the basic profile activities of the application. The

146 Chapter 7 n Java ME API Basics

lcdui package contains the classes that provide the primary components of the

user interface, such as the Form, CommandListener, and Canvas classes.

Following the import statements, you see the signature line of the class. To define

the class, you extend the MIDlet class, which gives you access to the core MIDlet

application functionality. In addition, you implement the CommandListener

interface, which lets you handle messages from the events that the commands

generate.

Having presented the import directives and the class signature line, you proceed

to declare Form and Command objects and a few test attributes of the boolean and

int types. The forceExit attribute is used as a toggle to allow you to exit the

MIDlet. The Form (form) and Command (quit) objects are central UI objects. The

The MIDlet Class 147

Figure 7.3
The output from the test MIDlet demonstrates the application termination process.

Form object allows you to display messages. The Command object provides a

number of defined properties for keys. Among these are those for SCREEN, STOP,

and EXIT. In addition, solely for testing purposes, a few static attributes are

declared: countStart, constructApp, destroyApp. You can increment the values of

these attributes to more clearly show the cycle of the primary MIDlet methods.

In the lines following comment #1, you implement the constructor for the

LifecycleTest class. The constructor makes use of the System.out.println()

method to issue test messages to the command line (or Output area). Within

the constructor, you call the constructor for the Form class. The Form con-

structor takes one argument, a string that provides a name for the MIDlet.

After that, you assign the Form object to the form identifier and use the form

identifier to call the Form::append()method, which writes a text message to the

display as the Form object is being constructed. Following that, you call the

Form::setCommandLisener() method, which equips the Form with the func-

tionality needed to process messages. The argument for this method is a

reference to the LifecycleTest class object, which is provided through the this

keyword.

In the closing lines of the LifecycleTest constructor, you call the constructor of

the Command class to create an instance of a Command object, which you assign to the

quit identifier. Creation of Command objects receives more discussion further on,

but for now notice that the Command constructor takes three arguments. The first

is the label for the command ("Quit"), the second is the field value that identifies

the type of command (SCREEN), and the last is an integer to designate the level of

priority you want to assign to the command. The Form::addCommand() method

then adds the Command object (quit) to the Form object (form).

Starting and Stopping

Following comment #2 in the LifecycleTest class, you define the startApp()

method. When this method is called, it causes the state of the application to

change from paused to running. It also provides a place in which you can initialize

or refresh objects used for display. In this respect, the Display::getDisplay()

method is called statically to return the screen (Display object) of the MIDlet, and

you then use this object to call the setCurrent() method to set the next object

(form) to be displayed. This action is invoked when the application starts initially or

is paused and then started again. The result of this action for the current application

is that when you click the SELECT button, you see a console message, and the value

148 Chapter 7 n Java ME API Basics

of the static countStart attribute allows you to see a change as you exit and restart

the application.

In the lines trailing comment #3, you define the pauseApp() method. When you

switch from one MIDlet to another, the pauseApp() method clears unneeded

resources. It is a frequently used method, for it is necessary to free as many

resources as possible when you switch between MIDlets. Clearing resources

(destroying them) requires you to reinitialize them when the application is

resumed. While initializing resources causes a delay, programmers generally

regard the tradeoff as justified, and players seldom object if a short pause pre-

cedes resumption of game or other activities. In this case, no action results from

this method, but in anticipation of work further on in this chapter, the println()

method is used to provide a brief test report to the command line. The appli-

cation management software invokes the pauseApp() method only when the

application transitions between states. Since this condition is achieved in this

class only when the MIDlet starts, the pauseApp() method is not called.

Closing

Trailing comment #4 in the LifecycleTest class, you implement the destroyApp()

method. The application management software calls this method as the MIDlet is

being closed. The method serves to establish that permission is granted for the

MIDlet to close safely. A MIDlet can close safely when this method can process a

change of state. The change of state in this case requires that the MIDlet be able to

destroy allocated resources no longer needed and save those that are persistent. If

this is not possible, then it throws an error of the MIDletStateChangeException type,

which notifies the system that the application cannotmake the change that has been

requested. If the argument to this function is true, then the state of the MIDlet

transitions to destroyed and a final method called notifyDestroyed() can be called.

The definition of the method in this case is set up so that if the first attempt to exit

fails, then the next attempt sets the value of forceExit to true, and the MIDlet can

be forced to close.

Command Actions

In the lines following comment #5, you implement thefinal code for the LifecycleTest

class. You define the CommandListener:: commandAction() method, which you can

access directly in this context because the LifecycleTest class implements the

CommandListener class. As with the previous methods, you provide a println()

The MIDlet Class 149

statement for testing purposes. After that, you provide a try. . .catch block in

which you implement the code that processes the quit message and destroys the

MIDlet.

The commandAction()method takes two arguments. The first is the command to

be performed. The second argument is of the abstract Displayable type

(concrete subclasses are Canvas and Screen). Within the try. . .catch block, you

provide a selection statement that tests whether the value of the command

argument equals the value assigned to the quit identifier. If so, then you call the

destroyApp() method with the forceExit attribute as an argument. As pointed

out previously, the forceExit attribute is a toggle, and its initial value is set to

false. The first pass, then, invokes the destroyApp() method. If the MIDlet can

release or save resources without problems, then the flow of the program

proceeds to the notifyDestroyed() method, and the MIDlet closes. If not, then

the MIDletStateChangeException message is issued, and the catch block is

entered. In this case, the only result is that the println() method prints a

message to the console.

Using Timer and TimerTask Objects
A Timer object enables you to schedule tasks for execution. It makes use of a

background application thread, and the tasks that you schedule using it can execute

either once or multiple times at determined intervals. You can implement several

Timer objects in a given MIDlet. Each Timer object has its own thread within the

application. The Timer class is supported by the TimerTask class, which allows you to

specify tasks. Both of these classes are in the java.util package, as Table 7.1

indicates. Two exceptions are associated with Timer methods. One of these is the

IllegalArgumentException, which indicates that the period or delay assigned to a

task is negative. Another is the IllegalStateException, which indicates that an

attempt to access a terminated Timer object has been made. Table 7.3 summarizes

the methods you find in the Timer class. Table 7.4 summarizes the TimerTask class.

Notice that the arguments for some of the methods in Table 7.3 include the terms

delay, period, and fixed. When a method has a delay, the delay designates a period

after the Timer object is instantiated. Different execution schemes apply to the

delay. One centers on the period. The other centers on the delay.

When the execution centers on the period, after the execution starts, first a

scheduled task is executed. If a Timer object designates tasks to be executed within

150 Chapter 7 n Java ME API Basics

Using Timer and TimerTask Objects 151

Table 7.3 Timer Methods

Method Description

Timer() Constructs a new Timer object.

void cancel() Terminates a Timer object and all the
tasks associated with it.

void schedule(TimerTask task, long period) The first argument designates the task to
be scheduled. This is a reference to an
object of the TimerTask type. The
second argument is of the long type
and designates the period in milliseconds
that elapses before the task executes.

void schedule(TimerTask task, Date time) The first argument designates the task to be
scheduled. This is a reference to an object
of the TimerTask type. The second
argument is of the Date type, which is
specified in milliseconds, and designates
precisely when the task is to be executed.

void schedule(TimerTask task, Date firstTime,
long period)

The first argument is of the TimerTask
type and designates the task to be
executed. The second is of the Date
type and establishes the first instance of
the task execution. The third argument
designates in milliseconds the intervals of
execution. Note that each execution is
scheduled relative to the delay after the
preceding execution.

void schedule(TimerTask task, long delay,
long period)

The first argument is of the TimerTask
type. The second is a long integer that
designates the time in milliseconds before
the task is to execute. The third argument
then establishes the interval of delay. The
execution begins after the first delay.

void scheduleAtFixedRate(TimerTask task,
Date firstTime, long period)

The first argument is of the TimerTask
type. The second is of the Date type and
establishes the first instance of the task
execution. The third argument designates a
fixed interval for execution in milliseconds.

void scheduleAtFixedRate(TimerTask task,
long delay, long period)

The first argument is of the TimerTask
type. The second designates delay in
milliseconds until the first execution. The
third argument establishes a fixed interval,
in milliseconds, for subsequent executions.

fixed periods, then they begin after the specified period of delay. Following that, if

they cannot execute after the defined delay, they are crowded into a period with

the next task. The period is preserved, even if the delay between the tasks is not.

This can mean that events execute in quick succession.

With fixed rate execution, the picture changes. Then the execution of an event is

relative to the execution of the previous event. The first task executes. Then

regardless of all else, the next task executes. If one event is delayed, then the

execution of all events that follow is also delayed.

In Table 7.3, you see that all of the Timer methods depend on arguments of the

TimerTask type. You create an instance of the Timer class. Then you create

instances of the TimerTask class and assign them to it. You can schedule, run, or

cancel a TimerTask object. Table 7.4 summarizes the methods the TimerTask class

offers.

The TimerTest Class

The TimerTest class provides an example of how to print the time in milliseconds

at regular intervals to the MIDlet display. To implement the TimerTest class, you

extend the MIDlet class and then create instances of the Timer and PrintTask

classes. The PrintTask is an inner class that extends the TimerTask. Here is the

code for the TimerTest class. The source file is located in the Chapter 7 code

folder. Note that if you are working with the NetBeans IDE, you can open the

Chapter7MIDlets project and access the code that way. See the sidebar ‘‘Projects

with NetBeans’’ for more information about using the NetBeans IDE. The code is

discussed in greater detail in the sections following.

152 Chapter 7 n Java ME API Basics

Table 7.4 TimerTask Methods

Method Description

TimerTask() Constructs a new timer task.

boolean cancel() Terminates the task. This method can terminate a task before
it has run or intervene in a Timer object’s scheduling of tasks
to terminate it at that point.

abstract void run() This method is overridden with a method containing the code
to be executed when the Timer event goes off. This method is
provided by the Runnable interface and is invoked to initiate
the execution of a task.

long scheduledExecutionTime() Returns the exact time at which the task was run last.

/**
* Chapter 7 / TimerTest
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*;

// #1
public class TimerTest extends MIDlet{

private Form form;
private Timer timer;
private PrintTask task;
private static int count = 10;
private static long lengthOfPause = 1000;

// #2 MIDlet constructor that creates a form, timer and simple task.
public TimerTest(){

form = new Form("Timer Test");
// Setup the timer and the print timertask
timer = new Timer();
task = new PrintTask();

}

// #3 Start the application and scheulde the task
protected void startApp() throws MIDletStateChangeException{

// display our UI
Display.getDisplay(this).setCurrent(form);

// schedule the task for execution every 100 milliseconds
timer.schedule(task, lengthOfPause, lengthOfPause);

}

// #4 If the applicaion pauses, stop the task execution
protected void pauseApp(){

task.cancel();
}
// #5 If there is a problem, exit and stop the timer
protected void destroyApp(boolean unconditional)

throws MIDletStateChangeException{
timer.cancel();

}

Using Timer and TimerTask Objects 153

//====================
// #6 Define ann inner class that extends the TimerTask class.
class PrintTask extends TimerTask{

// To implement a task you need to override the run method.
public void run(){

taskToRun();
}//end run

private void taskToRun(){
// output the time the task ran at
form.append("" + scheduledExecutionTime() + "\n");
if(count >10){

form.deleteAll();
count=0;

}//end if
count++;

}//end taskToRun() def
}//end TimerTask
//====================

}//end of class definition

Imports and Construction

In the lines preceding comment #1 of the TimerTest class, you use an import

statement to access the java.util package. This gives you access to the Timer and

TimerTask classes. Following comment #1, you define the signature line for the

TimerTest class. This involves, as in previous examples in this book, extending

the MIDlet class. After the signature line, you declare five class attributes. The

first is a Form object (form), which has been discussed already. The next two relate

to the timed execution of tasks in the class. The Timer attribute, timer, allows you

to create one or more TimerTask objects. In this class, you use only one such

object. This is provided by the task attribute, which is of the PrintTask data type.

The PrintTask data type is furnished by an inner class that is explained

momentarily.

In addition to the other attributes, you also create a static long attribute,

lengthOfPause, to which you assign a value of 1000. This attribute can be used to

set the task delay and period values. You also define a count attribute of the int

type to govern the number of lines written to the display (10).

154 Chapter 7 n Java ME API Basics

At comment #2, you define the constructor for the TimerTest object. Con-

struction involves creating an instance of the PrintTask class and assigning it to

the timer attribute. Given the construction of the TimerTest object, in the lines

trailing comment #3, you move to the implementation of the startApp()

method. To define this method, you first attend to setting up the display. This

topic has been discussed previously.

You then use the Timer::schedule() method to assign a PrintTask object to the

Timer object. The version of the schedule()method used in this instance sets the

task, the delay, and then the period for the task. Both of these values are set in

milliseconds, so with the initial value assigned to lengthOfPause, the task is

executed one second after the instantiation of the task and at one-second

intervals after that. (To experiment, change the initial value.)

Canceling Tasks

In the lines associated with comment #3 in the TimerTest class, you define the

pauseApp() method. You define this method using only one statement, which

involves using the PrintTask attribute, task, to call the PrintTask::cancel()

method. (Recall that the PrintTask class is derived from the TimerTask class.)

With the use of the cancel() method, when the user switches MIDlets, the Timer

action is cancelled. If you implement the TimerTest class using NetBeans, you can

see this happen when you switch between the MIDlets for Chapter 7.

In the lines following comment #5, you again call the Timer::cancel() method.

The result of this call is to cancel the Timer object, but as has been discussed

previously, if the resources associated with the Timer and the MIDlet generally

cannot be destroyed without problems, then the method throws a MIDletState-

ChangeException error.

The Inner PrintTask Class

In the lines following comment #6 of the TimerTest class, you create an inner

class called PrintTask. To define the PrintTask class, you extend the TimerTask

class. To accomplish this, you override one method, the run() method. Over-

riding the run() method involves inserting one statement into it. The statement

is a call to a method that encapsulates a task to be performed, taskToRun().

The run()method executes at the intervals the Task::schedule()method sets for

it. In this respect, then, you see the output of the taskToRun () method at

Using Timer and TimerTask Objects 155

intervals determined by the lengthOfPause attribute. The action is made visible

with a call to the Form::append() method.

The append() method successively concatenates the millisecond values returned

by the TimerTask::scheduledExecutionTime() method. These values report the

calculated times of execution given the arguments provided to the Timer:

:sehedule() method. These times are converted into strings, and as each string

is appended to the output, it is terminated by a line return (\n). A selection

statement audits the value of the count attribute. When the value of count is

greater than 10, the Form::deleteAll() method is called, clearing the MIDlet dis-

play and allowing another sequence of time values to be displayed. As Figure 7.4

illustrates, if you set the lengthOfPause attribute at 1000 and then 2000, you can

see different intervals represented in the display.

Networking
The MIDP includes support for the Generic Connection Framework (GCF). The

GCF provides a fairly straightforward approach to extending connectivity for

MIDlets indefinitely. Creating connections using the GCF involves using a

156 Chapter 7 n Java ME API Basics

Figure 7.4
The lengthOfPause setting allows you to see different timer intervals.

concrete class named Connector. The Connector class is a factory. You employ the

factory to create specific types of connections using interfaces derived from the

Connection interface hierarchy, illustrated in Figure 7.5. The Connector class and

the Connection interface hierarchy are both given by the javax.microedition.io

package.

As Figure 7.5 illustrates, I/O based on the DatagramConnection interface employ

packets. The others are stream based. This chapter illustrates the use of a stream

connection. Note also that the Connector class works in conjunction with the

ConnectionNotFound exception class.

The Connector Class

As mentioned previously, the Connector class is a factory class that makes use of

the interfaces provided by the Connection hierarchy to create stream and packet

connections. Factory activity begins with the use of the open() method of the

Networking 157

Figure 7.5
The Generic Connection Framework provides a full spread of general-purpose communications classes.

Connector class. As Table 7.5 illustrates, there are several overloaded forms of the

open()method. All of these are static. The most simple approach, as an argument

to the open()method, is to pass in the name of the resource to which you want to

connect. For example, here is how you connect to an HTTP resource:

Connector.open("http://java.sun.com");

The HttpConnection Interface

In the Connection interface hierarchy depicted in Figure 7.5, you find a partial

description of the interface that addresses HTTP connections involving low-

latency network tasks. This is the HttpConnection interface. For games, you can

use it to download content on demand, update scores or meta-game data, or

implement interplayer communications. Table 7.6 reviews a few of the methods

and properties this class provides.

158 Chapter 7 n Java ME API Basics

Table 7.5 Connector Methods and Modes

Method Description

static Connection open(String name) Constructs, opens, and returns a new
connection to the specified URL name.

static Connection open(String name, int mode) Constructs, opens, and returns a new
connection to the specified URL name and
access mode.

static Connection open(String name,
int mode, boolean timeouts)

Constructs, opens, and returns a new
connection to the specified URL name,
access mode, and a Boolean indicating
whether you want to see timeout excep-
tions being thrown.

static Connection
openDataInputStream(String name)

Opens a connection and then constructs
and returns a data input stream.

static Connection
openDataOutputStream(String name)

Opens a connection and then constructs
and returns a data output stream.

static Connection openInputStream(String name) Opens a connection and then constructs
and returns an input stream.

static Connection openOutputStream(String name) Opens a connection and then constructs
and returns an output stream.

static int READ Designates the READ mode.

static int READ_WRITE Designates the READ_WRITE mode.

static int WRITE Designates the WRITE mode.

The NetworkingHTTPTest Class

The NetworkingHTTPTest class provides a MIDlet that allows you to use the

Connector class to open a stream for data from a website. To open the con-

nection, you use a static call to the Connector::open() method. You use

HTTPConnection interface to establish a connection and then feed the data from

this connection to an InputStream object to receive the stream. Using the

getResponseCode() and openInputStream() methods lets you confirm and

Networking 159

Table 7.6 HttpConnection Methods and Properties

Method Description

long getDate() Retrieves the date header value.

long getExpiration() Retrieves the expiration header value.

String getHeaderFieldKey(int n) Retrieves the header key by index.

String getHeaderField(int n) Retrieves the header value by index.

String getHeaderField(String name) Retrieves the value of the named header field.

long getHeaderFieldDate(String name,
long def)

Retrieves the value of the named header field in the
format of a date long. If the field doesn’t exist, the
def value is returned.

int getHeaderFieldInt(String name,
int def)

Retrieves the value of the named header field as an
integer. If the field doesn’t exist, the def value is
returned.

long getLastModified() Returns the last modified header field.

String getURL() Returns the URL.

String getFile() Returns the file portion of the URL.

String getHost() Returns the host part of the URL.

int getPort() Returns the port part of the URL.

String getProtocol() Returns the protocol part of the URL.

String getQuery() Returns the query part of the URL.

String getRef() Returns the ref portion of the URL.

int getResponseCode() Returns the HTTP response status code.

String getResponseMessage() Returns the HTTP response message (if there was one).

String getRequestMethod() Returns the request method of the connection.

void setRequestMethod(String method) Sets the method of the URL request. Available types
are GET, POST, and HEAD.

String getRequestProperty(String key) Returns the request property value associated with
the named key.

void setRequestProperty(String
key, String value)

Set the request property value associated with the
named key.

HTTP_OK A request has succeeded.

effect the transfer of data. Here is the code for the NetworkingHTTPTest class.

You can find it in the Chapter 7 folder. If you have not yet built and run the

code, review the sidebar titled ‘‘Projects with NetBeans.’’

/**
* Chapter 7 / NetworkingHTTPTest
*
*/

import java.util.*;
import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;

// #1
public class NetworkingHTTPTest extends MIDlet
{

private Form form;
final int MAXLEN = 521;
String httpText;

public NetworkingHTTPTest() throws IOException{
form = new Form("Http Test Connector");

// #2 Create a HTTP connection to the java.sun.com site
String url = "http://java.sun.com/";
HttpConnection connection

= (HttpConnection)Connector.open(url, Connector.READ);

if (connection.getResponseCode() = = HttpConnection.HTTP_OK) {
InputStream inStream = connection.openInputStream();

// #3 Open the stream and read data
byte[] buffer = new byte[MAXLEN];
int total = 0;
while (total < MAXLEN) {

int count = inStream.read(buffer, total, MAXLEN - total);

if (count < 0) {
break;

}
total += count;

}//end while
// #4 Close the stream

160 Chapter 7 n Java ME API Basics

inStream.close();
httpText = new String(buffer, 0, total);

}
}
protected void startApp() throws MIDletStateChangeException{

Display.getDisplay(this).setCurrent(form);
form.append(httpText);

}

protected void pauseApp(){
}

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}
}//end class definition

When you run the NetworkingHTTPTestMIDlet, you see a security notification to

which you must respond. As Figure 7.6 shows, after you click to approve the

Networking 161

Figure 7.6
A message indicates that the connection is to be opened.

connection, it opens and you see the HTML text of the page to which you have

connected.

Preceding comment #1 in the NetworkingTest class, you see the import directives

needed to support the networking functionality. This includes the classes and

interfaces in the javax.microedition.io package, which supplied the Connection

class and the HttpConnection interface. There is also an include statement for the

java.io package, which supplies the InputStream and IOException classes. Fol-

lowing comment #1, you declare a final class attribute, MAXLEN, to govern the

length of the stream read by the MIDlet. You also make use of the String attribute,

httpText, which allows you to display the data string in the Form::append()

method.

In the lines following comment #2, you create a local String identifier, url, to

which you add the URL shown for the Sun site. You then proceed to use the

Connector class to statically call the open() method. The first argument to the

open() method provides the location of the data sought. The second establishes

the type of stream. The READ_WRITE property of the Connector class stipulates that

the connection is for both reading and writing. In this context, the READ property

also works without problems.

You then call the HttpConnection::getResponseCode() method to verify that the

connection has been established. The HTTP_OK property of the HttpConnection

interface definition provides a value to use to check the code. Assuming

the connection succeeds, you then call the openInputStream() method. This

method is inherited by the HttpConnection interface from the Connection

interface. You assign the stream to the inStream identifier, which is of the

InputStream type.

In the lines trailing comment #3, you create an array of the byte type (buffer)

and call the InputStream::read() method to retrieve the stream. The first

argument to the read() method is the array into which the data is placed, the

second is the offset, and the last is the length of the stream. The reading action is

terminated by the InputStream::close() method.

After the entire stream has been read, it is assigned to the String httpText attribute.

As you see in the lines following comment #4, you call the Form::append()method to

write the data to the display.

162 Chapter 7 n Java ME API Basics

Conclusion
The MIDlet, Timer, TimerTask, and Connector classes are but four of a multitude

of classes provided by the API, and the programs provided in this chapter

represent only a brief introduction to their capabilities. In the Connection

interface hierarchy, the HttpConnection interface works with many others to

allow you to develop a variety of connections. In the next few chapters, you

continue to examine the classes in the API. Chapter 8 deals with persistence, for

example. As you go, refer to Table 7.1 to review the API at a high level. Generally,

with respect to the MIDP 2.0, it is a good idea to create a ready link to the MIDP

site http://java.sun.com/javame/reference/apis/jsr118. This site provides you

with an immediate view of the classes, interfaces, fields, and other items covered

in this and subsequent chapters.

Conclusion 163

http://java.sun.com/javame/reference/apis/jsr118

This page intentionally left blank

Persistence with the RMS

In this chapter, you continue to explore the topics introduced in Chapter 7. The

topics dealt with in this chapter center on the RecordStore class. This class is

complemented by four interface classes: RecordEnumeration, RecordFilter,

RecordComparator, and RecordListener. Two key methods from the RecordStore

class allow you to add the capabilities the interfaces offer for managing records.

These are the enumerateRecords() and addRecordListener() methods. Both of

these methods are part of the RecordStore class interface. The activities you can

perform using the RecordStore class and its accompanying interface classes are

extensive and in many ways are comparable to those characteristic of a database

engine. RecordStore objects exist in isolation from the MIDlets in which they

are defined, so they can be accessed by other MIDlets if they share the same suite.

The RecordStore class and its accompanying interface classes are included in the

microedition.rms package.

Persistence
When you develop a MIDlet, you often use persistent data. Persistent data is data

that you retain between executions of a MIDlet, such as scores, personal infor-

mation that is displayed when you access a given MIDlet, or phone data. The

means by which you can store and retrieve such data is the Record Management

System (RMS). The record management system is a set of components designed

to provide services that resemble those of a database engine.

165

The RMS stores data as records. A record is an array of bytes, and is identified

using an integer value that is automatically assigned to the record as you add it to

the persistent data store. You then assign this to the data store. It is analogous to

the index of an array, but its values begin at 1, not 0.

At the center of the RMS activities is the RecordStore class. The RecordStore class

in many ways resembles a standard Java Collection class. It is distinct from a

collection object, however, because RecordStore objects are allocated storage in

a distinct memory location that is visible to all MIDlets in a given MIDlet suite.

Each RecordStore object is identified with a unique name that can be assigned

arbitrarily when the object is created. If the MIDlet associated with a given

RecordStore object is removed, the RecordStore object must also be removed. In

other words, while a RecordStore object exists in its own space, it is still asso-

ciated with an application.

Four primary interfaces are associated with the RecordStore class. The Record-

Enumeration interface allows you to iterate (or enumerate) through the items.

The RecordComparator interface allows you to compare items in a RecordStore.

The RecordListener interface allows you to audit changes in an item. The

RecordFilter interface provides a match() function, which works like a regular

expression to allow you to test whether items in a RecordStore are the same.

Several exception classes are associated with the RecordStore class and the

associated interfaces. Table 8.1 provides a summary view of the components

provided by the javax.microedition.rms package.

The RecordStore Class

As mentioned previously, a RecordStore object provides a memory area in which

RMS records are stored. As Figure 8.1 illustrates, a RecordStore object is per-

sistent (nonvolatile) and exists within the scope of a MIDlet suite. As the solid

lines in Figure 8.1 indicate, a given RecordStore object is associated with a specific

MIDlet, but it can also be accessed by any other MIDlet in the suite.

A RecordStore object is in some ways analogous to a Collection interface in the

java.util package (Vector, HashTable, or Stack, for example). On the other

hand, it is an entirely distinct entity. A RecordStore object is not, for example,

only an attribute of aMIDlet. When it is created, as Figure 8.1 suggests, it shares a

common scope with the MIDlet, but it occupies a unique address space, and it

can be accessed outside the MIDlet in which it is created.

166 Chapter 8 n Persistence with the RMS

Persistence 167

Figure 8.1
A MIDlet has access to RecordStore objects created in the MIDlet suite of which the MIDlet is part.

Table 8.1 The RMS Package

Class Description

RecordStore This is a concrete class. It is a collection of records. A key method of this class
is the addRecord() method.

RecordComparator This is an interface. It allows you to compare two records stored in a
RecordStore object.

RecordEnumeration This is an interface. It provides a way to iterate through RecordStore objects.

RecordFilter This is an interface. It provides a method, matches(), that tests the value
assigned to a record to determine whether it matches a specified value.

RecordListener This is an interface. It gives you the ability to audit record operations involving
adding, changing, or removing records. You use it in conjunction with the
RecordStore::addRecordListener() method.

Exception There are several exception classes associated with this package. These
include
InvalidRecordIDException,
RecordStoreException,
RecordStoreFullException,
RecordStoreNotFoundException, and
RecordStoreNotOpenException.

Table 8.2 summarizes the interface of the RecordStore class. A RecordStore object is

created using the openRecordStore() method. Records are added to it using the

addRecord() method. A RecordStore object is deleted using the static delete-

RecordStore() method. While a record exists, a number of methods provide

information about it. Among these are the getNumRecords(), getSize(), and get-

Name()methods. Examples of how to use these methods (and others) appear in the

RecordStoreTest class, which is presented in the next section of this chapter.

The RecordStoreTest Class

The RecordStoreTest class allows you to open a RecordStore object, assign the

names of a few of the months of the year to it, and display the assigned months.

After completing these actions, when you switch to another MIDlet, you also

close and destroy the RecordStore object. You can easily change this so that you

do not destroy the object. The RecordStoreTest class contains several custom

functions—createRecordStore(), populateRecordStore(), updateRecord(), and

displayRecordStore()—which refactor the primary activities of the class.

However, it is also important to note that the RecordStore object is closed and

deleted in the destroyApp() function. The destruction of the RecordStore object

allows you to repeatedly execute the RecordStoreTest MIDlet without accu-

mulating a large number of records. If you want to continue to accumulate

records through repeated executions of the MIDlet, then you can comment out

the call to the deleteRecordStore() method. Here is the code for the Record-

StoreTest class. You can find this code in the Chapter 8 code folder or, if you are

using NetBeans, you can access it in the Chapter8MIDlets directory.

/*
* Chapter8 \ RecordStoreTest
*
*/

import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.rms.*;

public class RecordStoreTest extends MIDlet{
// #1 Declare a RecordStore attribute and a name
private RecordStore rs;
private static final String STORE_NAME = "Test RecordStore Object";

168 Chapter 8 n Persistence with the RMS

Persistence 169

Table 8.2 RecordStore Methods

Method Description

static RecordStore openRecordStore
(String recordStoreName, boolean
createIfNecessary)

Opens a record store or creates one if it does not
exist.

void closeRecordStore() Closes a record store.

static void deleteRecordStore
(String recordStoreName)

Deletes a record store.

long getLastModified() Gets the last time the store was modified.

String getName() Gets the name of the store.

int getNumRecords() Returns the number of records currently in the store.

int getSize() Returns the total bytes used by the store.

int getSizeAvailable() Returns the amount of free space. (Keep in mind that
records require more storage for housekeeping over-
head.)

int getVersion() Retrieves the version number of the RecordStore
object. This number increases by one every time a
record is updated.

static String[] listRecordStores() Returns a string array of all the record stores on the
MIDlet to which you have access.

int addRecord(byte[] data, int
offset, int numBytes)

Adds a new record to the store.

byte[] getRecord(int recordId) Retrieves a record using an ID.

int getRecord(int recordId, byte[]
buffer, int offset)

Retrieves a record into a byte buffer.

void deleteRecord (int recordId) Deletes the record associated with the recordId
parameter.

void setRecord(int recordId, byte[]
newData, int offset, int numBytes)

Changes the contents of the record associated with
recordId using the new byte array.

int getNextRecordID() Retrieves the ID of the next record when it is inserted.

int getRecordSize(int recordId) Returns the current data size of the record store in
bytes.

RecordEnumeration enumerateRecords
(RecordFilter, RecordComparator,
keepUpdated)*

Returns a RecordEnumeration object, which is
used to enumerate through a collection of records.

void addRecordListener
(RecordListener listener)*

Adds a listener object that is called when records
in a RecordStore object are changed (added,
deleted, changed).

void removeRecordListener
(RecordListener listener)*

Removes a listener previously added using the
addRecordListener method.

* These methods are dealt with more extensively in the sections on RecordEnumeration, RecordFilter, and Record-
Comparator. See the sections of this chapter dealing with these topics for further discussion.

//The openRecordStore() method requires that an exception be handled
public RecordStoreTest() throws Exception{

// #2 Create an instane of the RecordStore object
//See "Problems Caused by Deletions""

//RecordStore.deleteRecordStore(STORE_NAME);
createRecordStore();

// Define a String array and assign elements
String[] months = {"April", "May", "June", "July", "August"};

// #2.1 Write records to a RecordStore object
//Use the length propraty to iterate through the array
for (int itr=0; itr < months.length; itrþþ){

populateRecordStore(months[itr]);
}
// #2.2 Retrieve records from a RecordStore object
int len = months.lengthþ1;
for (int itr=1; itr < len; itrþþ){

// if(itr < rs.getSize())
displayRecordStore(itr);

}
/* #2.3 Remove a record using an index
* Uncomment to show results
* Warning! Call this method only if the line
* following #6.1 is not commented out.
*/
removeRecord(3);

// #2.4 change the value of a record
updateRecord(2, "October");

}// End of constructor

// #3 Create the RecordScore
private void createRecordStore()throws RecordStoreException{

// Create an instane of the RecordStore object
rs = RecordStore.openRecordStore(STORE_NAME, true);
System.out.println("The current number of records: "

þ rs.getNumRecords());
System.out.println("Name of the current RecordStore object: "

þ rs.getName());
}//end createRecordStore

170 Chapter 8 n Persistence with the RMS

// #4 Create the RecordScore
private void populateRecordStore(String word)throws RecordStoreException{

int newRecordId = 0;
byte[] rec = word.getBytes();
if(word.length()==0){

rec = new String("none").getBytes();
}
try
{

newRecordId = rs.addRecord(rec, 0, rec.length);
}
catch (Exception ex)
{

System.out.println(ex.toString());
}

System.out.println("Record store now has " þ rs.getNumRecords() þ
" record(s) using " þ rs.getSize() þ " byte(s) " þ
"[" þ rs.getSizeAvailable() þ " bytes free]");

}//end populateRecordStore

// #5 Display the records in the RecordStore object
private void displayRecordStore(int index)throws Exception{

// Determine the size of each successive record
int recordSize = 0;
if(index < rs.getSize()){

recordSize = rs.getRecordSize(index);
}
// Check for the existence of the record
if (recordSize > 0)
{

String value = new String(rs.getRecord(index));
// Report progress to the console
System.out.println("Retrieved record: "

þ index þ " Value: " þ value);

}
}//end displayRecordStore

Persistence 171

protected void startApp() throws MIDletStateChangeException{
destroyApp(true);
notifyDestroyed();

}

protected void pauseApp(){
}

// #6 Close and delete the RecordStore object
protected void destroyApp(boolean unconditional)

throws MIDletStateChangeException{
//Close the RecordStore and then Remove it
try{

rs.closeRecordStore();
// #6.1 Comment out out to
// persist between sessions
RecordStore.deleteRecordStore(STORE_NAME);

}catch(RecordStoreException rse){}
}

// #7 Do not use this option if line after #6.1 is commented out
private void removeRecord(int recID)throws Exception{

String record;
int recordNum = 0;
try{

record = new String(rs.getRecord(recID));
System.out.println("Store size: " þ rs.getNumRecords());
if(rs.getRecordSize(recID)>0){

// #7.1 Use the record id to delete
rs.deleteRecord(recID);
System.out.println("Record removed: " þ record);
System.out.println("New store size: " þ rs.getNumRecords());

}
}catch(RecordStoreException rse){

System.out.println("Record " þ recID þ " not found.");
System.out.println(rse.toString());

}
}//end removeRecord

// #8 Update a record
private void updateRecord(int recID, String newValue)throws Exception{

String record;
try{

172 Chapter 8 n Persistence with the RMS

record = new String(rs.getRecord(recID));
System.out.println("Old record ("þ recIDþ ") data: " þ record);
if(rs.getRecordSize(recID)>0){

rs.setRecord(recID, newValue.getBytes(), 0, newValue.
length());

record = new String(rs.getRecord(recID));
System.out.println("Changed.New record ("þ recID

þ ") " þ record);
}

}catch(RecordStoreException rse){
System.out.println("Record " þ recID þ " not found.");
System.out.println(rse.toString());

}
}//end removeRecord

}//end RecordStoreTest

Construction

Figure 8.2 shows the first few lines of RecordStoreTest class’s output when the

class is executed in the NetBeans IDE. The activities shown reflect those of the

createRecordStore()method as called in the constructor of the RecordStoreTest

class. Later sections deal with further actions performed by the class.

In the lines preceding comment #1 of the RecordStoreTest class, you see that the

io and rms packages have been imported. The rms package provides the classes

for the RecordStore object and the interfaces related to it. The io package pro-

vides services related to data streams. In the lines following comment #1, the

RecordStore data type is used to create a class attribute, rs. After that, an attribute

to supply the name of the RecordStore object is defined (STORE_NAME). Note that it

is of the String type and is made final and static.

Persistence 173

Figure 8.2
The output shows the construction and state of the RecordStore object.

In the lines accompanying comment #2, the RecordStoreTest constructor is

defined. The constructor is defined so that it can throw an exception of the

generic Exception type. This level of exception handling is used so that subtypes

of the Exception class can be handled. The most important in this context is the

RecordStoreException type.

Four custom methods are called in the context of the constructor: create-

RecordStore(), populateRecordStore(), displayRecords(), and removeRecord().

The first activity within the constructor involves a call to the createRecordStore()

method, which contains code that creates a record store. After a record store is

created, the next step is to create a String array, months, to which the names of five

months are assigned. This array is then used in the lines following comment #2.1 as

an argument to the populateRecordStore() method. The argument to the method

consists of an element from the months array identified by the counter (itr). Each

element of the months array is added to the RecordStore object.

In the lines following comment #2.2, the displayRecords() method is called. In

this instance, the RecordStore::getNumRecords() method is used to retrieve the

number of records in the RecordStore object. The getNumRecords() method

returns an integer value, and this value is increased by one to shift the range

for the repetition statement that follows. The repetition statement calls the

displayRecords() method, which successively retrieves each record in the rs

RecordStore object.

Trailing comment #2.3 is the removeRecord() method. This method demon-

strates deletion of a record from a RecordStore object. As given in the sample

code, this method is initially assigned an invalid record number. To see it run,

before making changes, first read the section titled ‘‘Deleting Records,’’ later in

this chapter. At comment #2.4 is the updateRecord() method. As arguments, the

method requires the record number and new value for the record.

In the lines trailing comment #3, the createRecordStore() method is defined.

This method makes use of the static openRecordStore() method of the Record-

Store class, and for this reason, it must be defined so that it can handle an

exception generated by the openRecordStore() method. The RecordStore-

Exception type covers the exception. The version of openRecordStore() method

used requires the first argument to name the RecordStore object (STORE_NAME).

The second argument (true) forces the construction of the object if it does not

already exist. The instance of the RecordStore object returned by the method is

then assigned to the rs attribute.

174 Chapter 8 n Persistence with the RMS

The next few lines call the getNumRecords() and getName() methods. The get-

NumRecords() method returns an integer revealing the number of records in the

RecordStore object. The getName()method returns the name of the DataStore. Its

return type is String. These returned values are used as arguments for the

println()method. As the lines in Figure 8.2 illustrate, the values retrieved reveal

that the name of the DataStore object is ‘‘The DataStore Object’’ and that the

number of records currently assigned is 0.

Adding Records

In the lines following comment #4 in the RecordStoreTest class, the populate-

RecordStore() method is defined. The signature line of the method provides that

an exception of the RecordStoreException type can be thrown. This type of

exception can be thrown by the RecordStore::addRecord() method. To imple-

ment the method, a local variable, newRecordID, is declared and initialized to 0.

Then the String::getBytes()method is used to convert the string supplied by the

String word identifier from the method’s argument to a byte array suitable as an

argument to the addRecord() method. A check of the arguments submitted to the

method is then performed. If an empty string has been submitted, then a default

value of ‘‘none’’ is inserted into the record. The String constructor is used to

create the default value, and the String::getBytes()method is used to convert the

String object to a byte array, which is required for working with the RecordStore

object. The result is assigned to the rec identifier.

Within the try. . .catch block of the populateRecordStore() method, a call to the

RecordStore::addRecord() method adds a record to the RecordStore object (rs).

The RecordStore object expands automatically to accommodate the new record.

The first argument to the addRecord() method is the byte array, rec. The second

argument is the index of the first significant character of the rec array (index 0).

The last is the number of bytes of a given element to be added, and this is retrieved

from the length property of the rec array. The value returned by the addRecord()

method is an integer that indicates the position (or record ID) of the newly added

record in the RecordStore object. This integer is assigned to the newRecordID

identifier. As Figure 8.3 reveals, the values returned begin at 1.

Upon completion of the process that adds the record, the println() method is

used to print the status of the record and the RecordStore object. In the first call

to the println() method, the value of the newRecordID identifier is displayed.

After that, three RecordStore methods are called and the println() method is

used to display the values they return. The getNumRecords() method returns an

Persistence 175

integer revealing the number of records. The getSize()method indicates the size

of the RecordStore object in bytes. The getSizeAvailable() method reveals the

number of bytes remaining free for use by the RecordStore object. Figure 8.3

shows the change in the values with each of the newly added records.

Retrieving and Displaying Records

In the lines associated with comment #5 of the RecordStoreTest class, the dis-

playRecordStore() method is defined. This method retrieves and displays the

values stored in the RecordStore object. This method takes one argument, an

integer indicating the index of the record to be retrieved. Because the method

calls the RecordStore::getRecord() method, it must be able to handle excep-

tions. The Exception type satisfies this requirement.

With the first line in the body of the method, a call to the RecordStore:

:getRecordSize() method returns an integer that indicates the size, in bytes, of a

record. The record itself is identified using the index argument supplied by the

displayRecordStore() argument list. The value retrieved in this way is assigned to

the local recordSize identifier, which is then used in a selection statement to test

the validity of a record. A record must be at least 1 byte in length.

To retrieve the value stored in a record, the DataStore::getRecord() method is

called. This method returns a byte array, so to format the returned data for

display, it is made the argument of the String constructor. The String instance is

then assigned to the local String identifier, value, which is used as an argument

to the println()method, which renders the names of the months as illustrated in

Figure 8.4. The index identifier provides the index of each record and the value

assigned to the record.

176 Chapter 8 n Persistence with the RMS

Figure 8.3
As records are added, their indexes and storage requirements can be retrieved.

No t e

In Figure 8.4, notice that as a test to the populateRecordStore() method, for this run only, an
empty string (,‘‘’’) has been inserted at the end of the list of months used to define the month list
in the RecordStoreTest constructor:

String[] months = {"April", "May", "June", "July", "August", ""};.

Closing and Destroying

In the lines accompanying comment #6 of the RecordStoreTest class, the

destroyApp()method is defined. In the line preceding comment #6.1, you call the

closeRecordStore() method. This method locks the RecordStore object and

allows you to switch back and forth betweenMIDlets without generating errors or

corrupting data. It does not delete the data in the RecordStore object. On the other

hand, following comment #6.1, the static deleteRecordStore() method is called,

and this method does delete the RecordStore object. As an argument to this

method, you supply the name of the RecordStore object (STORE_NAME). To call the

method, you must place it in a try. . .catch block. The argument type for the catch

block is RecordStoreException. If the RecordStore has not been created or cannot

be destroyed, then this data type can handle the generated exception.

The lines in the destroyApp() method allow you to make a few easy adjustments

to the class to explore different options. The RecordStoreTest class focuses on the

generation of persistent data, which is data that continues to exist between

executions of an application. For convenience, the class is initially set up to delete

the persistent data it creates so that you can more readily explore concepts. To

see the accumulation of persistent data, comment out the line containing the

Persistence 177

Figure 8.4
The DataStore::getRecord() method allows you to retrieve values you have assigned to a
RecordStore object.

deleteRecordStore() method, as shown in Figure 8.5. Unless you remove the

comment from the deleteRecordStore() method, records continue to accu-

mulate in the RecordStore object, and rebuilding the class does not remove them.

Although it is difficult to discern in Figure 8.5, with a few clicks of the SELECT

button, 55 records have been generated.

Deleting Records

For deleting records, the removeRecord() method is called in the lines associated

with comment #2.3 in the RecordStoreTest class. To proceed with this section,

perform the following tasks:

1. Verify that the lines following comment #6.1 appear exactly as follows:

// #6.1 Comment out this line to allow the object to

178 Chapter 8 n Persistence with the RMS

Figure 8.5
By changing the code that deletes the RecordStore, you can see data that persists across builds and
runs of the RecordStoreTest class.

// persist between sessions
RecordStore.deleteRecordStore(STORE_NAME);

2. Supply a valid number other than 2 to the call to the method after comment

#2.3:

deleteRecord(2);

3. Rebuild and compile your program.

4. Refer to the sidebar ‘‘Problems Caused by Deletions’’ for further details.

The removeRecord() method allows you to delete a record you designate using

the record ID (or index) of the record in the RecordStore object. The definition

of the method follows comment #7. In the definition of the method, the signature

line designates that an exception of the Exception type can be thrown.

The argument of the removeRecord() method is an int value (recID). The value

of recID is passed to the RecordStore::getRecord() method, which returns a

byte array. The String constructor is used to convert the array to the String

type, and then it is assigned to the record identifier. This identifier is passed to

the println() method to display the name of the month from the record stores.

Next, the getNumRecords() method is called to obtain the initial number of

records. This is returned as an int value and concatenated with the output

string.

After the validity of the record is established, the deleteRecord()method is called.

This is the central method in the RecordStore class for deleting records. It takes

one argument, an integer, which identifies the index of the record to be deleted. It

has no return value. After the record has been deleted, the println() method is

called two more times, one to show the text of the record removed, and the other

to show the new size of the RecordStore object after the removal of the record.

The new size is returned by the getNumRecords()method. As Figure 8.6 illustrates,

with index 2, ‘‘May’’ is removed, and the record count is reduced by one.

Processing of exceptions is accomplished by placing most of the code in the

removeRecord() method in a try. . .catch block. For the definition of the catch

block argument, the RecordStoreException data type is used. This data type

provides its own output message, but it is helpful in this context to provide an

additional message indicating why a problem has occurred. Figure 8.7 shows

what happens if the value of the recID argument is outside the range given for

this exercise.

Persistence 179

180 Chapter 8 n Persistence with the RMS

P r o b l em s C a u s e d b y D e l e t i o n s

When you are experimenting with the removeRecord() method, always uncomment the line
following comment #6.1:

RecordStore.deleteRecordStore(STORE_NAME);

If you happen to run the program with this line commented out, the program generates an error.
The methods of the class do not consistently include functionality that allows detection of
removed records. If you encounter problems after deleting records, insert the following line after
comment #2 in the constructor and rebuild and run the program. This allows the program to
rebuild the data store from scratch.

// #2 Create an instance of the RecordStore object

RecordStore.deleteRecordStore(STORE_NAME);

Such problems can be remedied in a number of ways. One is with the use of enumerations.

Figure 8.6
The deleteRecord() permanently deletes a record from the RecordStore object.

Figure 8.7
If 7, which is outside the default range of the record set, is used as an argument to the removeRecord()

method, an error is generated.

Record Enumerations and Record Stores 181

Updating Records

The lines following comment #8 in the RecordStoreTest class define the update-

Record() method. This method takes as its argument an integer (recID) that desig-

nates the record number and a String value (newValue) that provides the new data for

the record. As with othermethods involving records, it processes errors of the general

Exception type. The lines that implement the method begin with the declaration of a

local String identifier, record. Within a try. . .catch block, the RecordStore (rs)

attribute is used to call the getRecord() method, which retrieves the data of the

record. The getRecord() method takes as its argument the recID value from the

argument list of the method. The record byte value returned by the getRecord()

method is used as an argument to the String constructor, which converts the byte

value to a String value. The value is then assigned to the record identifier.

After reporting the old number and value of the record using the println()

method, the code then uses the RecordStore attribute to call the getRecordSize()

method. Again, the value assigned to recID is used as an argument. The size of the

record is returned. If this is not greater than zero, then no change is made.

To change the record, the RecordStore::setRecord() method is called. This

method takes four arguments. The first is the number (recID) of the record to be

changed. The second is the value to be inserted into the record. This must be a

byte array. Note that to convert the String argument from the method’s argu-

ment list into a byte array, the String::getBytes() method is used. The third

argument is the offset or starting point from which data in the new string is to be

taken. The fourth argument designates the number of characters to be read from

the offset point in the new string.

After the new data value has been inserted, the println() method is again called.

As Figure 8.8 illustrates, the recID and record identifiers provide the new record

value and confirm that the value has been applied to the appropriate record.

Record Enumerations and Record Stores
Using the RecordEnumeration object, it is possible to iterate forward or backward

through the records in a RecordStore object. After you have created a RecordStore

object and populated it with records, the basic procedure for associating a Record-

Enumeration object with it involves, first, declaring a RecordEnumeration object and

then calling the RecordStore::enumerateRecords() method to enumerate objects in

the RecordStore object and initialize the RecordEnumeration object.

Figure 8.9 illustrates a basic approach to accomplishing this task. After you

have created the RecordEnumeration object, you employ it to call such methods

182 Chapter 8 n Persistence with the RMS

Figure 8.9
The enumerateRecords() method allows you to join the activities of the RecordStore class and
RecordEnumeration interface.

Figure 8.8
The getRecord() method changes the value of a record.

as hasNextElement() and nextRecord() to navigate through the DataStore

records.

The enumerateRecords() method is a member of the RecordStore class. It was

listed earlier in this chapter in Table 8.2, which summarized RecordStore

methods. I gave it little attention in that context because of its dependency on the

RecordEnumeration interface. It deserves extended discussion in the current

context, because its use is necessary prior to applying the methods associated

with the RecordEnumeration class.

Record Enumerations and Record Stores 183

Table 8.3 RecordEnumeration Methods

Method Description

void destroy() Destroys the enumeration object.

boolean isKeptUpdated () Indicates whether this enumeration object is automatically rebuilt if the
underlying record store is changed.

keepUpdated (boolean
keepUpdated)

Changes the keepUpdated state.

void rebuild () Causes the index of the enumeration object to be rebuilt, which can
result in a change to the order of entries.

void reset () Resets the enumeration back to the state it was in after it was created.
In other words, when you increment an enumeration object, it no longer
identifies the first element in the RecordStore object. It has been
incremented or decremented. This method places it back in its original
position.

boolean hasNextElement () Tests whether there are any more records in the enumeration in a first-
to-last order.

boolean
hasPreviousElement ()

Tests whether there are any more records in the enumeration in a last-
to-first order.

byte[] nextRecord () Retrieves the next record in the store.

byte[] previousRecord () Gets the previous record.

int previousRecordId () Returns the ID of the previous record.

int nextRecordId () Returns the ID of the next record.

int numRecords () Returns the number of records, which is important when you are using
filters.

enumerateRecords(null,
null, false)*

This method is called by a RecordStore object and returns a
RecordEnumeration object. The methods listed above can then be
called. The arguments by default can be set at null, null, and false.
The first argument allows you to add a filter. The second argument
allows you to add a comparator. The last indicates whether the
Enumeration object should be automatically updated.

* This is a RecordStore method. It is listed here because of its position as the central method linking the
RecordStore class and the RecordEnumeration interface.

Table 8.3 lists the methods associated with the RecordEnumeration interface.

The most visible of these in the current setting are the hasNextElement() and

nextRecord() methods. The hasNextElement() method can be used in almost

any context in which standard for and while repletion statements are used. It

reduces implementation time and produces a safe result. The nextRecord()

method returns a byte array, so it is necessary to translate its returned value

using such techniques as String construction to be able to use record values for

display purposes. The numRecords() and destroy() methods prove useful in

situations in which it is necessary to regenerate an enumeration after deletions

or additions.

The RecEnumTest Class

A standalone version of the RecEnumTest class is located in the Chapter 8 code

directory. You can also access this code by opening the Chapter8MIDlets project

with the NetBeans IDE. The RecEnumTest class explores the use of the Record-

Enumeration interface and also reviews the standard form of the Enumeration class

that allows you to work with, among other things, the Vector class. The Rec-

EnumTest class is set up in a manner that closely resembles the RecordStoreTest

class. A few improvements have been made. Rather than using repletion state-

ments with controls and incremented counters, it uses only enumerations. Also,

rather than an array, it uses a Vector collection. Here is the code for the Rec-

EnumTest class. Discussion of it follows.

/*
* @ see Chapter 8 / RecEnumTest.java
*/

import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.rms.*;
import java.util.*;

public class RecEnumTest extends MIDlet{
// #1 Declare a RecordStore attribute and a name
private RecordStore rs;
private static final String STORE_NAME = "Test RecordStore Object";
private Vector months = new Vector();

public RecEnumTest() throws Exception{
// #2 Set up the data
setUpVector();

184 Chapter 8 n Persistence with the RMS

// Construct an empty RecordStore object
createRecordStore();

// #2.1 Place items from the Vector object into the
// the RecordStore object
Enumeration monthEnum;
for (monthEnum = months.elements(); monthEnum.hasMoreElements();/**/){

assignRecord(monthEnum.nextElement().toString());
}

// #2.2
displayRecordStore();

}// End of constructor

// #3 Add elements to the Vector class attribute
private void setUpVector(){

//Add elements to the Vector object
months.addElement("April");
months.addElement("May");
months.addElement("June");
months.addElement("July");
months.addElement("August");

// #3.1 Declare and use local instance of a standard Enumerator
Enumeration monthEnum;
// Use the enumerator
for (monthEnum = months.elements(); monthEnum.hasMoreElements();/**/){

System.out.println("Vector item: " þ monthEnum.nextElement());
}

}// end setUpVector

private void createRecordStore()throws RecordStoreException{
// Create an instance of the RecordStore object
rs = RecordStore.openRecordStore(STORE_NAME, true);
System.out.println("The current number of records: "

þ rs.getNumRecords());
System.out.println("Name of the current RecordStore object: "

þ rs.getName());
}//end createRecordStore

// #4 Assign a record to the DataStore object
public void assignRecord(String record){

if(record.length()==0){

Record Enumerations and Record Stores 185

record = "none";
}
byte[] rec = record.getBytes();
try{

rs.addRecord(rec, 0, rec.length);
System.out.println("Record assigned. Number of records: "

þ rs.getNumRecords());
}catch (Exception ex){

System.out.println(ex.toString());
}

}//end assignRecord

// #5 Create and RecordEnumerator and iterate through the records
public void displayRecordStore(){

try{
if (rs.getNumRecords() > 0){

// #5.1
RecordEnumeration recEnum;
recEnum = rs.enumerateRecords(null, null, true);
while (recEnum.hasNextElement()){

// 5.2 Retrieve the numbers
int recNum = recEnum.nextRecordId();
//Use the record number to get the data
//For the RecordStore itself
String record = new String(rs.getRecord(recNum));
System.out.println(" Record ID: " þ recNum þ

" Record value: " þ record);
}

}
}catch (Exception e){

System.out.println(e.toString());
}

}//end displayRecordStore

protected void startApp() throws MIDletStateChangeException{
destroyApp(true);
notifyDestroyed();

}

public void pauseApp(){
}

protected void destroyApp(boolean unconditional)

186 Chapter 8 n Persistence with the RMS

throws MIDletStateChangeException{
//Close the RecordStore and then Remove it
try{

rs.closeRecordStore();
RecordStore.deleteRecordStore(STORE_NAME);

}catch(RecordStoreException rse){}
}// end destroyApp

}// end of class

Vectors and Enumerations

In the lines preceding comment #1, the import statements are provided. Notice,

however, the inclusion of the util package. This package provides the Vector and

Enumeration classes, which are used in the RecEnumTest class along with the

RecordEnumeration interface. Discussion later on covers the util classes in

greater detail. In the lines following comment #1, a Vector attribute is added

(months). The Vector class is derived from the Collection class and provides an

example of a class that can be used with an Enumeration. In this context, it

replaces the array that appeared in the previous example.

No t e

If you are familiar with the template constructors used with Collection classes, note that in this
implementation, a template form of construction is not used. This version of the MIDP classes
does not support the templates. However, to change the declaration to a template form, you use
the following form:

Vector<String> months = new Vector<String> ();

Generally, programmers suggest using ArrayList instead of Vector objects, but ArrayList is
not provided in the util package for the MIDP.

In the lines accompanying comment #2, the class constructor for the RecEnumTest

class is implemented. First, a call is made to the setUpVector() method, which

sets up the data for the class. At comment #3, the setUpVector() method is

implemented. In the lines of the method, the Vector object (months) is used to call

the addElement() method. This method appends an element to the end of the

Vector object. The type of the object is implicitly associated with the Vector, so

when it is retrieved from it, it is usually necessary to cast or reassert its type. The

Vector expands automatically as the new element is added. In this instance, five

names of months are added.

Record Enumerations and Record Stores 187

In the lines of the constructor following comment #2.1 and also in the lines

following comment #3.1, an Enumeration object is declared (monthEnum). In both

cases, the Vector::elements() method is called. The elements() method iden-

tifies the elements in the Vector object and returns an Enumeration object. Again,

in both places, it is assigned to the monthEnum identifier.

The Enumeration object is then used in a for repetition statement. For the first

argument of this statement, the monthEnum object is used as a counter. The second

argument furnishes the control, which in this case is a call to the hasMore-

Elements()method of the Enumeration class. This method returns a value of true,

so it iterates through the elements stored in the Enumeration object until it reaches

the last element. At that point, it returns false. The empty comment (/**/) appears

only to emphasize that no explicit incremental action is required. The hasNext-

Element() serves to both increment and control the action of the statement.

Given the report that is issued by the println() method called immediately after

comment #3.2, the output shown in Figure 8.10 appears. At this point, only the

months Vector object and the Enumeration objects have been used. None of the

records have as yet been assigned to the RecordStore object.

Assignment of the months to the RecordStore object occurs in the constructor, in

the lines following comment #2.1. The for repetition statement uses the Enu-

meration object and the nextElement() method repeatedly to supply the

assignRecord() method with the name of a month. The assignRecord()method

is defined in the lines that follow comment #4. This method is a refactored

version of the populateRecordStore() method shown earlier in this chapter.

188 Chapter 8 n Persistence with the RMS

Figure 8.10
The Vector object and its associated Enumeration object replace arrays and repetition statements that
use controls and counters.

Refactoring isolates the activity of the RecordStore::addRecord() method to

make it possible to add a single record at a time to the RecordStore object (rs).

The nextElement() method successively retrieves each enumerated month that

has been stored in the Enumeration object, but since a String argument is

required, it is necessary to cascade the toString() method with the next-

Element() method. As mentioned previously, calling the toString() method is a

way of asserting the data type of the elements that have been assigned to the

Vector object. Figure 8.11 shows the action of the assignRecord()method, which

issues the message

Record assigned. Number of records:

for each month added to the RecordStore object.

RecordStores and RecordEnumerations

In the lines associated with comment #5 of the RecEnumTest class, the display-

Record() method is implemented. This version of the method differs from the

one seen previously in this chapter in that it makes use of the RecordEnumeration

interface. Specifically, at comment #5.1, a local RecordEnumeration identifier,

recEnum, is declared. In the next line, the RecordStore::enumerateRecords()

method is called using the RecordStore rs attribute.

The enumerateRecords()method takes three arguments. The first argument can be

used to designate a filter for the items iterated. A filter is a matching algorithm.

Record Enumerations and Record Stores 189

Figure 8.11
The RecordEnumeration object allows you to display records with relative ease.

Since no filter is defined, a setting of null is used. The second is used to designate a

comparator for the items iterated. A comparator is an algorithm for ordering the

items. No comparator is defined, so again the value submitted is null. The third

argument is of the boolean type and indicates whether the RecordEnumeration

should be automatically updated as it is used. For example, if elements are removed

then a true setting automatically updates the Enumeration so that adjustments are

automatically made. In this case, the setting is to true.

The enumeration of the records is assigned to the recEnum identifier, and then the

recEnum identifier is used to call the hasNextElement() method. The hasNext-

Element() method iterates through the records stored in the RecordEnumeration

object. Each time it finds a next element, it returns true. When it reaches the last

element, it returns false. In this way, it serves to control the while repetition

statement.

Within the while repetition statement, following comment #5.2, the recEnum

object is used to call the nextRecordId() method. This method successively

returns the ID or index number of each enumerated item in the recEnum object.

The returned value is of the int type and is assigned to the recNum identifier. The

recNum identifier is then used as an argument to the RecordStore::getRecord()

method, which returns a byte array holding the value assigned to a record. To be

able to alter this returned value so that it can be displayed, a String constructor is

employed. The new String object is assigned to the record identifier. The lower

five lines of the output shown in Figure 8.11 report the activities of this method.

Clearly, analogies can be made between the actions of the Enumeration::hasMore-

Elements() and the RecordEnumeration::hasNextElement() methods. These

methods iterate through a collection and then at the end return false. The same

applies to the Enumeration:nextElement() method and the RecordEnumeration:

:nextRecordId()method. These methods return successive elements with each call,

incrementing the enumeration. What applies to these methods also applies to the

Vector::elements() method and RecordStore::enumerateRecords() method.

Using a RecordComparator Object
As mentioned previously, a comparator is an algorithm for ordering the items.

An object of the RecordComparator type is used as the first argument to the

RecordStore::enumerateRecords()method. In many cases, a sorting algorithm is

not needed for an enumeration, because the order in which items are assigned to

a RecordStore can be inspected iteratively with relative ease. On the other hand,

190 Chapter 8 n Persistence with the RMS

at times being able to order items becomes essential. The RecordComparator

interface in this respect becomes extremely helpful.

At the core of the interface is the compare()method. It is the only visible method in

the RecordComparator interface. As shown in Table 8.4, this method takes two

Using a RecordComparator Object 191

Table 8.4 RecordComparator Methods and Related Details

Method or Property Description

int compare(byte[] rec1, byte[] rec2) This method is overridden in the specialization
of the RecordComparator interface used to
create a class suitable for filtering. In this
method, two records, rec1 and rec2, are
compared. By default, if rec1 comes before
rec2 in the sort order, then the RecordCom-
parator.PRECEDES is returned. If rec1
comes after rec2 in the sort order, then
RecordComparator.FOLLOWS is returned. If
rec1 and rec2 are the same, then Record-
Comparator.EQUIVALENT is returned. The
String::compareTo() method can be used
to customize operations.

static int EQUIVALENT Given the sort order, the two records are the
same.

static int FOLLOWS Given the sort order, the second argument in the
compare() argument list comes after the first
argument in the compare argument list.

static int PRECEDES Given the sort order, the first argument in the
compare() argument list comes after the
second argument in the compare argument list.

enumerateRecords(null, comparator, false)* This method is called by a RecordStore object
and returns a RecordEnumeration object.
The arguments by default can be set at null,
null, and false. The second argument allows
you to add a comparator. It is necessary to
specialize (implement) the RecordCompara-
tor interface to create this class.

String::compareTo(String) This method is frequently used in the definition
of the conditions set in the compare()
method. Given two words, WordA and WordB,
if WordA is alphabetically prior to WordB, then a
negative integer value is returned. If WordA
alphabetically follows WordB, then a positive
integer value is returned. If WordA is alphabe-
tically equal to WordB, then zero is returned.

* This is a RecordStore method. It is listed here because of its position as the central method linking the
RecordStore class and the RecordComparator interface.

arguments, both arrays of the byte type. The arguments designate records (rec1

and rec2). The default orders of sorting algorithms are described in Table 8.4, but

the three properties (EQUIVALENT, FOLLOWS, and PRECEDES) can be used in selection

structures in the definition of the compare() method to create a variety of out-

comes. For example, it is possible to reverse orders or to sort alphabetically.

To implement the RecordComparator interface, the standard approach is to

implement an inner class using the RecordComparator interface and then to create

an instance of this class to use an argument when the enumerateRecords()

method is called. Several inner classes can be created if different ordering algo-

rithms are needed. The discussion in this section reviews two implementations.

The ComparatorTest Class

The ComparatorTest class is in the Chapter 8 source folder. As with other classes

in this chapter, it is included in the Chapter8MIDlets project folder for the

NetBeans IDE. The ComparatorTest class provides two inner classes, RCom-

parator and AComparator. The AComparator class implements a compare()

method that sorts the items in the RecordStore object alphabetically. The

RComparator sorts them in reverse alphabetical order. The display-

RecordStore() method is redefined from its previous version to allow for an

argument of the RecordComparator type. Objects of the RComparator and

AComparator types can be passed to it because they are each subclasses of the

RecordComparator interface.

/*
* Chapter 8 \ ComparatorTest.java
*
*/

import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.rms.*;
import java.util.*;

public class ComparatorTest extends MIDlet{

// Declare a RecordStore attribute and a name
private RecordStore rs;
private static final String STORE_NAME = "Test RecordStore Object";
private Vector months = new Vector();

192 Chapter 8 n Persistence with the RMS

//Construct
public ComparatorTest() throws Exception{

// Set up the data
setUpVector();

// Construct an empty RecordStore object
createRecordStore();

// #1 Use Comparators
RComparator rComp = new RComparator();
AComparator aComp = new AComparator();
displayRecordStore(rComp);
displayRecordStore(aComp);

}// End of constructor

private void setUpVector(){
//Add elements to the Vector object
months.addElement("April");
months.addElement("May");
months.addElement("June");
months.addElement("July");
months.addElement("August");
months.addElement("September");
months.addElement("October");
months.addElement("November");

// Declare a local instance of a standard Enumerator
Enumeration monthEnum;
// Use the enumerator
for (monthEnum = months.elements(); monthEnum.hasMoreElements() ;) {

System.out.println(" Vector item: " þ monthEnum.nextElement());
}

}

// Create the RecordScore
private void createRecordStore()throws RecordStoreException{

// Create an instane of the RecordStore object
rs = RecordStore.openRecordStore(STORE_NAME, true);
System.out.println("Name of the current RecordStore object: "

þ rs.getName());
//Verify content
Enumeration monthEnum;

Using a RecordComparator Object 193

for (monthEnum = months.elements() ; monthEnum.hasMoreElements() ;) {
assignRecord(monthEnum.nextElement().toString());

}

}//end createRecordStore

// Assign individual records to the RecordStore object (rs)
public void assignRecord(String record){

if(record.length()==0){
record = "none";

}
byte[] rec = record.getBytes();
try{

rs.addRecord(rec, 0, rec.length);
} catch (Exception ex){

System.out.println(ex.toString());
}

}

// #2 Display the records in the RecordStore object
// Using one of two comparators
public void displayRecordStore(RecordComparator compare){

try{
if (rs.getNumRecords() > 0){

RecordEnumeration recEnum;
recEnum = rs.enumerateRecords(null, compare, true);
//Retrieve class names
System.out.println("Order after " þ

compare.getClass().toString());
while (recEnum.hasNextElement()){

int recNum = recEnum.nextRecordId();
String record = new String(rs.getRecord(recNum));
System.out.println(" Record ID: " þ recNum þ

" Record value: " þ record);
}

}
}catch (Exception e){

System.out.println(e.toString());
}

}

// Close and delete the RecordStore object

194 Chapter 8 n Persistence with the RMS

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

//Close the RecordStore and then Remove it
try{

rs.closeRecordStore();
RecordStore.deleteRecordStore(STORE_NAME);

}catch(RecordStoreException rse){}
}

protected void startApp() throws MIDletStateChangeException{
destroyApp(true);
notifyDestroyed();

}

public void pauseApp(){
}

//== = = = = = = = = = == = = = = = = = = = = = = == = = = = = = = = = = = = == = = = = = = =
// #3 Inner class to define a AComparator -- Alphabetical
// Overload one method – compare
public class AComparator implements RecordComparator{

public int compare(byte[] rec1, byte[] rec2) {
String str1= new String(rec1);
String str2= new String(rec2);
int cmp = str1.compareTo(str2);
if (cmp > 0) return RecordComparator.FOLLOWS;
if (cmp < 0) return RecordComparator.PRECEDES;
//(cmp = = 0)
return RecordComparator.EQUIVALENT;

}
}//End inner class

//== = = = = = = = = = == = = = = = = = = = = = = == = = = = = = = = = = = = == = = = = = = =

// #4 Inner class to define a RComparator -- Reverse
public class RComparator implements RecordComparator {

public int compare(byte[] rec1, byte[] rec2) {
String str1= new String(rec1);
String str2= new String(rec2);
int cmp = str1.compareTo(str2);
if (cmp < 0) return RecordComparator.FOLLOWS;
if (cmp > 0) return RecordComparator.PRECEDES;
//(cmp = = 0)

Using a RecordComparator Object 195

return RecordComparator.EQUIVALENT;
}

}// End inner class

//== = = = == = = = = = = = = = = = = == = = = = = = = = = = = = = == = = = = = = = = = = = = == = =

}// end of ComparatorTestclass

Use with the enumerateRecords() Method

In the lines associated with comment #1 in the ComparatorTest class, two

instances of RecordComparator objects are declared and defined. These are the

RComparator and AComparator objects. After their declaration, they are passed as

arguments to two calls of the displayRecordStore() method. The effect of these

two calls to the displayRecordStore() method is to cause the list of months

defined in the setUpVector() method to be displayed in ascending and des-

cending alphabetical order.

In the lines following comment #2, the displayRecordStore() method is defined.

The method takes an argument of the RecordComparator type (compare). This

argument is passed to the enumerateRecords() method, which takes a Record-

Comparator object as its second argument. Its first argument is a filter. In this case,

no filter has been defined, so the filter argument is set to null. The third argument

allows the RecordStore enumeration to be updated. This argument is set to true.

The value returned by the enumerateRecords() method is a RecordEnumeration

object (recEnum) defined using the RecordComparator object.

The argument provided to the displayRecordStore()method is then used to call

the getClass() and toString() methods in a cascading fashion. This allows the

names of the RecordComparator classes used to order the enumerations to be

named for display. Given this label, the recEnum object is then used as the

argument of a while repetition statement to call the RecordEnumeration::

hasNextElement() method. As has been mentioned already, this method

returns true until it reaches the end of the enumerated items, at which point it

returns false. With a call to the nextRecordId() method, the IDs of the records

as sorted by the RecordComparator algorithm are returned, and when used as

arguments to the getRecord() method, the values in the records are retrieved.

Figure 8.12 illustrates the output of the two calls to the displayRecordStore()

method.

196 Chapter 8 n Persistence with the RMS

Specializing the RecordComparator Interface

To specialize the RecordComparator interface, you must redefine the Record-

Comparator::compare() method. This method allows you to define an algorithm

for sorting the items in an enumeration. In the lines following comment #3 of the

ComparatorTest class, the AComparator class is defined. This is an inner class. In

the definition of this class, use is made of String values derived from the byte

array arguments of the compare()method (byte[] rec1, byte[] rec2). To convert

the byte arrays into String objects, the String constructor is repeatedly used.

String objects make it possible to use the String::compareTo() method, which

compares the calling String item with the String item submitted as an argument

to it. This method returns three values based on the comparison. Here again is a

summary of how it works.

n Given two words, WordA and WordB, if WordA is alphabetically prior to

WordB, then a negative integer value is returned.

n If WordA alphabetically follows WordB, then a positive integer value is

returned.

n If WordA is alphabetically equal to WordB, then zero is returned.

Using a RecordComparator Object 197

Figure 8.12
The definition of the compare() method determines the outcome of the RecordComparator action.

In the implementation of the AComparator class, the compareTo() method is used

to generate an integer that is used to determine how the values of the Record-

Comparator constants are to be returned. The selection statements are set up as if

statements to make it clearer how the values of the compareTo()method are used.

The value returned by the method is assigned to the cmp identifier, and then this

identifier is included in the selection statements that follow. The proximity of the

two if selection arguments makes it easy to see how items can be sorted in

forward or reverse order.

In the lines following comment #3, the forward comparator algorithm is

implemented in the AComparator:: compare() method. In this context, if the first

term is greater than the second (cmp > 0), the value of FOLLOWS is returned. If the

first term is less than the second term (cmp < 0), then the value of PRECEDES is

returned. If the two are equal, then the value of EQUIVALENT is returned. Using this

algorithm, the items in the RecordStore object are sorted alphabetically.

In the lines following comment #4, the RComparator class is implemented. This

class implements a version of the compare() method that sorts items in reverse

order. In this setting, if the first term is less than the second term (cmp < 0), the

value of FOLLOWS is returned. If the first term is greater than the second term

(cmp > 0), then the value of PRECEDES is returned. If the two are equal, then

the value of EQUIVALENT is returned. Using this algorithm, the items in the

RecordStore object are sorted in reverse alphabetical order.

Using a RecordFilter Object
A filter is an algorithm that you can submit to the RecordStore::enumerate-

Records()method to direct it to select only specific records from the RecordStore

object. To create a filter, you implement a specialized version of the RecordFilter

class. To specialize the class, you override the matches() method. After you have

implemented a specialized version of the RecordFilter class, you can then use an

instance of it as the first argument in the enumerateRecords() method. Table 8.5

provides a summary view of some of the details related to the class.

The FilterTest Class

The FilterTest class is located in the Chapter 8 folder along with the other

classes in this chapter. It is also included in the Chapter8MIDlets project for the

NetBeans IDE. The class involves code already worked with in this chapter, but

198 Chapter 8 n Persistence with the RMS

new features have been added. An inner class named TextFilter is implemented;

in it the primary method in the FilterTest interface is defined so that records

containing specific text can be selected from among those in a RecordStore

object. The constructor for this class accepts as an argument a string to be used as

a filter.

The text used for filtering can be any string that might comprise all or part of

the elements assigned to the RecordStore object. To use the specialized version

of the TextFilter interface, the displaySelectedRecords() method is defined. It

accepts as an argument the text to be used as a filter. Its implementation then

allows the argument to be used in the construction of a TextFilter object. Here is

the code for the FilterTest class; extended discussion follows.

/*
* Chapter 8 \ FilterTest.java
*
*/

import java.io.*;

Using a RecordFilter Object 199

Table 8.5 RecordFilter Details

Method Description

boolean matches (byte[] candidate) Returns true if the candidate record validly passes
through the filtering rules. You must define this method
when you specialize the RecordFilter interface.

String::indexOf(char, int) This method, often used in redefinitions of the
compare() method, returns an integer that indicates
the first location of the character designated by its first
argument. The second argument specifies the position in
the string from which the search is to start. If a negative
number is used for the starting position, the method
treats it as though it is a zero. If the number designating
the start index is larger than the length of the string,
then the method returns �1.

enumerateRecords(filter, null, false)* This method is called by a RecordStore object and
returns a RecordEnumeration object. You can set the
argument for the method at filter, null, and true.
The first argument allows you to add a filter. It is
necessary to specialize (implement) the RecordFilter
interface to create the class for the filter.

* This is a RecordStore method. It is listed here because of its position as the central method linking the
RecordStore class and the RecordFilter interface.

import javax.microedition.midlet.*;
import javax.microedition.rms.*;
import java.util.*;

public class FilterTest extends MIDlet{
// Declare a RecordStore attribute and a name
private RecordStore rs;
private static final String STORE_NAME = "Test RecordStore Object";
private Vector months = new Vector();

public FilterTest() throws Exception
{

// #1 Set up the data
setUpVector();
// Construct an empty RecordStore object
createRecordStore();

// #1.1
displaySelectedRecords("none");

}// End of constructor

// #2 Set up data so that there are some "none" values
private void setUpVector(){

//Add elements to the Vector object
months.addElement("April");
months.addElement("May");
months.addElement("nonentity");
months.addElement("June");
months.addElement("none");
months.addElement("July");
months.addElement("August");

// Declare a local instance of a standard Enumerator
Enumeration monthEnum;
// Use the enumerator
for (monthEnum = months.elements(); monthEnum.hasMoreElements() ;){

System.out.println("Vector item: " þ monthEnum.nextElement());
}

}

// Create the RecordScore
private void createRecordStore()throws RecordStoreException{

rs = RecordStore.openRecordStore(STORE_NAME, true);
System.out.println("The current number of records: "

200 Chapter 8 n Persistence with the RMS

þ rs.getNumRecords());
System.out.println("Name of the current RecordStore object: "

þ rs.getName());
Enumeration monthEnum;
for (monthEnum = months.elements() ; monthEnum.hasMoreElements() ;){

assignRecord(monthEnum.nextElement().toString());
}

}//end createRecordStore

// Assign individual records to the RecordStore object (rs)
public void assignRecord(String record){

if(record.length()==0){
record = "none";

}
byte[] rec = record.getBytes();
try{

rs.addRecord(rec, 0, rec.length);
System.out.println("Record assigned. Number of records: "

þ rs.getNumRecords());
} catch (Exception ex){

System.out.println(ex.toString());
}

}

// #3 Use the filter for the records
public void displaySelectedRecords(String textFilter){

try{
if (rs.getNumRecords() > 0){
// Verify the arugument
String letters = new String(textFilter).trim();
System.out.println("Filtered with: " þ letters);

// #3.1 Create and instance of the filter
TextFilter filter = new TextFilter(letters);

// Use the instance of the filter as an argument
RecordEnumeration recEnum

= rs.enumerateRecords(filter, null, true);
//Retrieve record numbers and data fromthe DataStore object
while (recEnum.hasNextElement()){

int recNum = recEnum.nextRecordId();
String record = new String(rs.getRecord(recNum));
System.out.println("(Found) Record ID: " þ recNum);
System.out.println(" Record value: " þ record);

Using a RecordFilter Object 201

}
}

}catch (Exception e){
System.out.println(e.toString());

}
}

// #4 Define a class for filtering
//== = = = == = = = = = = = = = = = = == = = = = = = = = = = = = = == = = = = = = = = = = = = =

class TextFilter implements RecordFilter{

private String textToFind = null;
// #4.1
public TextFilter(String text)
{

textToFind = text.toLowerCase();
}

// #4.2
public boolean matches(byte[] value){

String str = new String(value).toLowerCase();
// Look for a match
if (textToFind != null && str.indexOf(textToFind) != -1){
return true;

} else{
return false;

}
}// end match

}// end LetterFilter
//== = == = = = = = = = = = = = = = == = = = = = = = = = = = = == = = = = = = = = = = = = == =

// Close and delete the RecordStore object
protected void destroyApp(boolean unconditional)

throws MIDletStateChangeException{
//Close the RecordStore and then Remove it
try{

rs.closeRecordStore();
RecordStore.deleteRecordStore(STORE_NAME);

}catch(RecordStoreException rse){}
}

protected void startApp() throws MIDletStateChangeException{
destroyApp(true);

202 Chapter 8 n Persistence with the RMS

notifyDestroyed();
}

public void pauseApp(){
}

}// end of FilterTest class

FilterTest Construction

In the lines preceding comment #1 of the FilterTest class, RecordStore (rs) and

Vector (months) attributes are defined for the class. An instance of the Vector

class is created. In the line following comment #1, a call is then made to the

setUpVector() class. In classes discussed previously in this chapter, this method

has been used to define the primary list of records to be used in the RecordStore

object. As the lines following comment #3 illustrate, the picture remains the same

in this context, with the difference that more records are used and, in a few

instances, a string or substring consisting of ‘‘none’’ is appended to the Vector

object (months) using the addElement() method.

In the line associated with comment #1.1, the displaySelectedRecords() is

called. This method takes an argument of the String type. In this case, the

argument is ‘‘none’’. To trace the work of the argument, it is necessary to inspect

the code following comment #3, where the displaySelectedRecords()method is

defined. The argument for the function is defined using the TextFilter identifier.

This argument is then used as the argument to a String constructor and assigned

to the letters identifier. The String::trim() method eliminates trailing spaces

from the filter text before it is assigned to the letters identifier.

After the println() method writes the value assigned to the letters identifier to

the console, in the lines following comment #3.1, the letters identifier is used a

second time as the argument to the TextFilter constructor. The constructor

takes one argument, which specifies the string to be used as a filter. The instance

of the TextFilter class is assigned to the filter identifier.

The filter identifier can then be used as an argument in the enumerateRecords()

method of the RecordStore class. The method is called using the rs attribute,

and an instance of TextFilter class is used as its first argument. Its second

argument is used to designate a comparator. In the current context, no com-

parator has been defined, so an argument of null is assigned. The last argument

designates whether the RecordEnumeration object is to be automatically upda-

ted, and this value is set to true. The RecordEnumeration object is assigned to the

Using a RecordFilter Object 203

recEnum object, and given the definition of the filter, the nextRecordId()

method returns only those records that contain the ‘‘none’’ string. Figure 8.13

illustrates the output.

Specializing the RecordFilter Interface

To define a filter to be used in the RecordStore::enumerateRecords() method,

it is necessary to override the matches() method of the RecordFilter interface.

To accomplish this task, as is shown in the lines trailing comment #4, an inner

class, TextFilter, is created. The TextFilter class implements the Record-

Filter class.

The class contains one attribute, textToFind, which is of the String type. As the

lines associated with comment #4.1 reveal, for the implementation of the

TextFilter constructor, one argument is defined (text). This argument is then

converted to lowercase characters using the String::toLowerCase() method and

assigned to the textToFind attribute. Converting the string to lowercase letters

ensures that they are filtered consistently.

204 Chapter 8 n Persistence with the RMS

Figure 8.13
Filtering in the TextFilter class involves wrapping the indexOf() method in the match() method.

Given this construction sequence, following comment #4.2, the matches()

method is implemented. The matches() method takes one argument of the byte

array type (value). The value identifier is used as an argument in a String

constructor. The constructor calls the toLowerCase() method to convert the

resulting string to lowercase letters, and the result is assigned to the str identifier.

The identifier is then used in a selection statement that employs a compounded

Boolean expression. The first part tests for the existence of the string. The second

part tests the value returned by the String::indexOf() method.

As pointed out in Table 8.5, the indexOf() method returns an integer that

indicates the first location of the character designated by its first argument. The

second argument specifies the position in the string from which the search is to

start, and if the number designating the start index is larger than the length of the

string, then the method returns –1. Generally, then, the match() in this case wraps

the indexOf() method. The result returned is the string the text argument

provides. As Figure 8.13 illustrates, the filter allows the enumeration object to

examine the list for those records that correspond to the string or substring

‘‘none’’. The indexOf() method can find either.

Using RecordListener Objects
The RecordListener interface provides three methods that allow you to create

listeners for RecordStore actions involving adding, changing, and deleting

records. A listener is a method that is automatically paired with another method.

It reports on the actions of the method with which it is paired. As Figure 8.14

illustrates, the RecordListener interface provides three methods. They work

in conjunction with the addRecord(), deleteRecord(), and setRecord() methods

of the RecordStore classes. Each time one of these methods is invoked, the

recordAdded(), recordChanged(), or recordDeleted()method is also invoked. By

taking advantage of this relationship, you can perform background messaging or

cleanup activities.

To make it so that such services are provided, one approach is to create an

inner class that implements the RecordListener interface. Within this class, the

three methods of the RecordStore interface can then be overridden to define

specific actions to be performed in conjunction with the three RecordStore

messages.

Using RecordListener Objects 205

Table 8.6 lists some of the interface features of the RecordListener interface. In

addition to the functions the RecordListener interface provides, to use record

listeners, it is necessary to call the addRecordListener() method of the

RecordStore class. This adds the listener. It is also helpful to call the remove-

RecordListener() method to delete items in the listener event list.

The RecordListenerTest Class

The RecordListenerTest class provides an example of how to create a MIDlet

class (RecordListenerTest) that features an inner class (Listener). The inner

class implements the RecordListener methods so that they can serve as a

206 Chapter 8 n Persistence with the RMS

Figure 8.14
One approach to adding a listener to a MIDlet is to use an inner class.

customized set of listeners for the add, delete, and change methods associated

with the RecordStore class. In this context, the inner Listener class defines

the RecordListener methods so that they issue command line messages. These

listeners replace most of the println() method calls used to trace events in the

classes developed previously in this chapter. To activate the listener methods it

is necessary to call the RecordStore::addRecordListener() method, which as

Table 8.6 mentions, takes a RecordListener object as its argument. You can

find the RecordListenerTest class in both a standalone version in the Chapter 8

source folder and also in the Chapter8MIDlets project set up in the NetBeans

IDE. Discussion of the code follows.

/*
* Chapter 8 \ RecordListenerTest.java
*
*/

import java.io.*;
import javax.microedition.midlet.*;

Using RecordListener Objects 207

Table 8.6 RecordListener and Related Methods

Feature Method

void recordAdded(RecordStore recordStore,
int recordId)

This is the RecordListener method
called when the addRecord()of the
RecordStore class is called.

void recordChanged (RecordStore recordStore,
int recordId)

This is the RecordListener method
called when the setRecord() method of
the RecordStore class is called.

void recordDeleted (RecordStore recordStore,
int recordId)

This is the RecordListener method
called when the deleteRecord()
method of the RecordStore class is
called.

void removeRecordListener(listener)* This is a RecordStore method used to
remove a record listener from a MIDlet
class.

void addRecordListener(RecordListener
listener)*

This is a RecordStore method that adds
a listener to the RecordStore object so
that when records in the RecordStore
object are changed (added, deleted,
changed), the listeners can issue mes-
sages about the changes or take other
actions.

* These are RecordStore methods. They are listed here because of their position as central methods linking the
RecordStore class and the RecordListener interface.

import javax.microedition.rms.*;
import java.util.*;

public class RecordListenerTest extends MIDlet{

private RecordStore rs;
private static final String STORE_NAME = "Test RecordStore Object";
private Vector months = new Vector();
Listener listener = new Listener();
private final int RECORD_LIMIT = 10;
private Random random;

//Construct
public RecordListenerTest() throws Exception{

random = new Random(12L);
// #1 Add a record listener to the class
rs = RecordStore.openRecordStore(STORE_NAME, true);
rs.addRecordListener(listener);

setUpVector();
// Construct an empty RecordStore object
createRecordStore();

// #1.1
displayRecords();

// #1.2
updateRecord(1, randomMonth());
removeRecord(2);

}// End of constructor

// #2 Set up data so that there are some "none" values
private void setUpVector(){

//Add elements to the Vector object
int itr = 0, ctrl = 5;
while(itr < ctrl){

months.addElement(randomMonth());
itrþþ;

}

Enumeration monthEnum;
for (monthEnum = months.elements(); monthEnum.hasMoreElements() ;){

System.out.println("Vector item: " þ monthEnum.nextElement());
}

}

208 Chapter 8 n Persistence with the RMS

// #3 Generate data randomly
private String randomMonth(){

String changes[] = {"January", "February", "March",
"April", "May", "June",
"July", "August", "September",
"October", "November", "December"};

int randInt = 0;
randInt = random.nextInt(12);
String val = changes[randInt];
return val;

}

// 3.1 Create the RecordScore
private void createRecordStore()throws RecordStoreException{

setUpVector();
if(rs.getNumRecords()< RECORD_LIMIT){

for(Enumeration monthEnum = months.elements();
monthEnum.hasMoreElements();){

assignRecord(monthEnum.nextElement().toString());
}

}

}//end createRecordStore

// #3.2 Assign individual records to the RecordStore object (rs)
public void assignRecord(String record){

if(record.length()==0){
record = "none";

}
byte[] rec = record.getBytes();
try{

rs.addRecord(rec, 0, rec.length);
} catch (Exception ex){

System.out.println(ex.toString());
}

}

// #3.3 Call to the listner with each creation of a record
public void displayRecords(){

try{
if (rs.getNumRecords() > 0){

RecordEnumeration recEnum;
recEnum = rs.enumerateRecords(null, null, true);

Using RecordListener Objects 209

while (recEnum.hasNextElement()){
int recNum = recEnum.nextRecordId();
String record = new String(rs.getRecord(recNum));
System.out.println(" Record ID: " þ recNum þ

" Record value: " þ record);
}

}
} catch (Exception e){

System.out.println(e.toString());
}

}

// #3.4 Call to the listner with each deletion
private void removeRecord(int recID)throws Exception{

try{
if(rs.getRecordSize(recID)>0){

rs.deleteRecord(recID);
}

}catch(RecordStoreException rse){
System.out.println("Record " þ recID þ " not found.");

// System.out.println(rse.toString());
}

}//end removeRecord

// #3.5 Call to the lisener with each update
private void updateRecord(int recID, String newValue)throws Exception{

String record;
try{

record = new String(rs.getRecord(recID));
if(rs.getRecordSize(recID)>0){

rs.setRecord(recID, newValue.getBytes(), 0, newValue.
length());

}
}catch(RecordStoreException rse){

System.out.println("Record " þ recID þ " not found.");
//System.out.println(rse.toString());

}
}//end

210 Chapter 8 n Persistence with the RMS

// #4 Create a Listener class
//== = = = = = == = = = = = = = = = = = = = == = = = = = = = = = = = = == = = = = = = = = = = = = ==
class Listener implements RecordListener

{

// #4.1 Reports that a record is added
public void recordAdded(RecordStore recordStore, int recID){

String listenerID = "(recordAdded listener)";
try{

System.out.println(listenerID þ " Added record " þ recID
þ " to "
þ recordStore.getName());

System.out.println("(recordAdded listener) Number of records: "
þ recordStore.getNumRecords());

}
catch(Exception e){

System.out.println(e);
}

}

// #4.2 Reports that a record is changed
public void recordChanged(RecordStore recordStore, int recID){

String listenerID = "(recordChanged listener)";
try{

String change = new String(recordStore.getRecord(recID));
System.out.println(listenerID þ " Changed record " þ recID

þ " to "
þ change);

}catch (Exception e){
System.out.println(e);

}
}

// #4.3 Reports when a record is deleted
public void recordDeleted(RecordStore recordStore, int recID) {

String listenerID = "(recordDeleted listener)";
try{

System.out.println(listenerID þ " Deleted record " þ recID
þ " from "
þ recordStore.getName());

System.out.println("New store size: " þ
rs.getNumRecords() þ "\n");

Using RecordListener Objects 211

}
catch (Exception e){

System.out.println(e);
}

}
}// end inner class

//= = == = = = = = = = = = = = = == = = = = = = = = = = = = == = = = = = = = = = = = = == = = =

// #5 Close and delete the RecordStore object
protected void destroyApp(boolean unconditional)

throws MIDletStateChangeException{
//Close the RecordStore and then Remove it
try{

rs.removeRecordListener(listener);
rs.closeRecordStore();

/// #5 Remove the listener
RecordStore.deleteRecordStore(STORE_NAME);

}catch(RecordStoreException rse){}
}

protected void startApp() throws MIDletStateChangeException{
destroyApp(false);
notifyDestroyed();

}

public void pauseApp(){
}

}// end of class

RecordListenerTest Construction

As is evident in the lines preceding comment #1 in the RecordListenerTest class,

the activity that takes place in the constructor of the RecordListenerTest class

involves first declaring a RecordStore attribute (rs) and then initializing an

instance of the inner Listener class (listener). Creating an instance of the

Listener class is not enough to immediately associate it with the RecordListe-

nerTest class, but it is a necessary preliminary. In addition to the Listener object,

the attribute list also provides for a constant value, RECORD_LIMIT, which controls

the number of records the class adds to the RecordStore object. This attribute is

212 Chapter 8 n Persistence with the RMS

used in the createRecordStore() method (see comment #3.1) to check for the

number of records that have been added to the MIDlet record store. It is initially

set to 10.

After the definition of the RECORD_LIMIT constant, an identifier for a Random class

object is declared (random). Then, on the first line within the scope of the con-

structor, an instance of the Random class is created and assigned to the random

identifier. The argument for the Random constructor is a long value that sets the

range of random numbers that Random object generates. To designate a literal

constant as a long, an L is appended to the constant (12L). When an instance of

the Random class is created at the class scope and then initialized in the constructor

(as it is here), it can generate new values as it is employed in various contexts later

on through calls to the randomMonth() method.

Following comment #1, an instance of a RecordStore object is created and

assigned to the rs attribute. After that, the addRecordListener()method is called.

This method takes as its argument the listener attribute created in the attribute

list. The addRecordListener() method is an important part of the RecordStore

interface. It is complemented by the removeRecordListener() method, which is

called in the destoryApp() method (see comment #5). Removal of the listener

prevents the application from accumulating listener messages if you repeatedly

invoke it.

Following the addition of the RecordListener object, the setUpVector() method

is invoked. This method has been presented in several of the classes discussed

previously in this chapter. It assigns elements to the Vector class attribute

(months). In this implementation, as is evident in the lines following comment #2,

the elements are added to the Vector using the calls to the randomMonth()

method. A while repetition statement is used to add records in groups of five.

The value for a month is added by using a call to the randomMonth()method as an

argument to the Vector::addElement() method. The randomMonth() method

returns the name of a month each time it is called.

Assigning Records

Following comment #3, the randomMonth() method is defined. It has no argu-

ments, and its return type is String. To define this method, the first task involves

creating a String array (changes) consisting of the 12 months of the year. Then

the Random::nextInt()method is called. The random attribute has been declared

at class scope and initialized in the class constructor. When it is used to call the

Using RecordListener Objects 213

nextInt()method, it returns a pseudorandom number in the range from 0 up to

the number set as its argument. In this case, the argument is 12, so the range

extends from 0 to 11. The argument defines the limit of the range returned by the

method but is not itself within the range. The number returned by the nextInt()

is used as an index to retrieve the name of the month from the changes array. This

value is returned as a String object by the randomMonth()method. Each call of the

method in theory generates a random month name.

RecordListener Actions

In the line preceding comment #1.1, the createRecordStore() method is called.

This method is defined in the lines following comment #3.1. At the start of the

definition is a call to the setUpVetor() method (see comment #2), which refreshes

the list of months that can be added to the RecordStore object. Next, the RECOR-

D_LIMIT constant is used to control the number of records added to the Record-

Store (rs) object. A record can be assigned to the RecordStore object as long as the

value returned by the getNumRecords() method is less than the defined value for

RECORD_LIMIT. This element is introduced to this program to limit its capacity to

create new records with each new execution. The starting value is 10 but for

experimentation this can be set to 50, 500, or any other value. A for repletion

statement is then implemented using a compacted implementation of an Enu-

meration object. Within the repletion block, the assignRecord() method is called.

This proves an important step. Associated with comment #3.2, the assign-

Record() method remains largely the same in appearance as in previous classes in

this chapter. It serves as a wrapper for the addRecord() method. With each call of

this method, a record is added to the RecordStore object, and as Figure 8.15 shows,

a message is written to the console. Notice, however, that the println() method

that printed such messages is now absent from the assignRecord() method. The

messages are now issued by the Listener::recordAdded() method. This listener

has been attached to the addRecord()method and generates a message each time it

is invoked. Figure 8.15 illustrates the messages issued by the listener as the

addRecord() method is called 10 times to create the initial set of records.

The displayRecords()method is called following comment #1.1. This method is

defined in the lines following comment #3.3. The only significant feature of the

method is that the enumerateRecords() method is set without RecordComparator

or RecordFilter objects. The third argument to the method is true, so the

RecordEnumeration object can be updated as needed.

214 Chapter 8 n Persistence with the RMS

At comment #1.2, the updateRecord() and removeRecord() methods are called.

These methods, like the assignRecord() method, invoke actions from listeners.

The removeRecord() method (see comment #3.4) invokes the deleteRecord()

method of the RecordStore class. Whenever the deleteRecord() method exe-

cutes, its action triggers the recordDeleted()method of the Listener class. Along

the same lines, the updateRecord() method (see comment #3.5) invokes the

setRecord() method of the RecordStore class. This in turn calls the record-

Changed()method of the Listener class. Figure 8.16 in the next section illustrates

the messages these methods generate.

Specializing the RecordListener Interface

In the lines trailing comment #4 of the RecordListenerTest class, the inner

Listener class is defined. To define this class, it is necessary to implement the

RecordListener interface. After that, the three methods of the interface are

Using RecordListener Objects 215

Figure 8.15
A message is generated each time the addRecord() method is called.

overridden. As shown in the code following comments #4.1, #4.2, and #4.3,

these are the recordAdded(), recordChanged(), and recordDeleted() methods.

You can use the same technique to implement all three of these methods. In the

current setting, the approach involves moving the code that was previously

embedded in the RecordListenerTest class into the methods of the Listener class.

In the implementation of the recordAdded() method, for example, a standard

message for the addRecord() action —‘‘(recordAdded listener)’’— is assigned to

a local String identifier, listenerID. After that, a try. . .catch block is created, and

within this a series of calls to the println() method reports the action.

As is shown in Figures 8.15 and 8.16, since the RecordStore (rs) object lies within

the scope of both the outer and inner classes, calls to the getName() and get-

NumRecords() methods report on activities involved in adding, changing, and

deleting records.

Exceptions

The classes presented in this chapter have provided examples of exception

handling, but the examples are limited. By calling the toString()method during

216 Chapter 8 n Persistence with the RMS

Figure 8.16
The Listener class provides messages that accompany actions involving adding, changing, and
deleting records.

testing sessions you can readily identify the types of exceptions thrown. These are

described in Table 8.7. You can use the println() method to channel the default

exception text to the command line. In many of the classes shown in this chapter,

the general Exception type suffices to handle most of the exceptions.

RecordStoreNotFoundException, RecordStoreNotOpenException, InvalidRecord-

IDException, and RecordStoreException can usually be handled without

restarting the MIDlet. This is not the case with the RecordStoreFullException,

which usually requires that resources be freed up to provide sufficient space for

the MIDlet to execute.

Conclusion
In this chapter, you have continued the exploration of the MID API by con-

centrating on persistent objects. The resources available for working with per-

sistent objects are extensive, but they all center on the RecordStore class. The

static RecordStore::openRecordStore() method is used to add a RecordStore

object to a MIDlet. The static RecordStore::deleteRecordStore() method is

used to remove a RecordStore object. The RecordStore class offers the add-

Record(), getRecord(), setRecord(), and deleteRecord() methods to accom-

plish the basic tasks usually associated with databases. The RecordEnumeration

interface makes it possible to create enumeration objects for RecordStore objects.

To accomplish this, the enumerateRecords() method of the RecordStore class

is used. The RecordEnumeration interface includes the hasNextElement() and

nextRecordID() methods. The enumerateRecords() method can also be used to

Conclusion 217

Table 8.7 RMS Exceptions

Exception Description

InvalidRecordIDException Indicates that an operation could not be completed because the
record ID was invalid.

RecordStoreException Indicates that a general exception occurred in a record store
operation.

RecordStoreFullException Indicates that an operation could not be completed because the
record store system storage was full.

RecordStoreNotFoundException Indicates that an operation could not be completed because the
record store could not be found.

RecordStoreNotOpenException Indicates that an operation was attempted on a closed record
store.

add objects of the RecordFilter and RecordComparator interfaces to actions

associated with the RecordEnumeration interface. The RecordFilter interface

requires that the matches() method be overridden. The RecordComparator

interface requires that the compare() method be overridden. Along with these

capabilities, one other is also available. This is the use of listeners, which the

RecordListener interface provides. By defining the recordAdded(), record-

Changed(), and recordDeleted() methods of the RecordListener interface,

automatic actions can be established for the addRecord(), setRecord(), and

deleteRecord() methods of the RecordStore class.

218 Chapter 8 n Persistence with the RMS

User Interface Basics

This chapter initiates a sequence of several chapters that review the classes in

the MIDP that allow you to readily implement user interfaces. The classes

that provide these services begin with the Displayable class, which provides a

pattern for such classes as Form, TextBox, Alert, and List. By associating Command

objects with Displayable objects and using the capabilities provided by the

CommandListener interface, you can readily handle the messages generated by

the Displayable objects. Processing messages can be accomplished through the

commandAction() method of the CommandListener interface. This method allows

you to track messages of the Displayable and Command types. Levels of abstraction

characterize the user interface components of the MIDP. The higher the level of

abstraction, the more readily the components can be implemented.

User Interface (LCDUI)
The MIDP provides what might be viewed as three sets of user interface classes.

One set provides a high-level, abstract UI. Another set furnishes a low-level,

concrete UI. In a middle level of abstraction is the Game API, which combines

features of both of the other two sets. Each set of classes allows you to achieve

specific ends. This chapter and the next provide a discussion of high-level classes.

Chapter 11 discusses low-level classes. Chapter 13 discusses specific aspects of the

Game API classes.

219

Figure 9.1 illustrates the differences between the classes with respect to their levels

of abstraction. Some features of the software you develop for devices allow few

development options. Others allow many. The fewer the options, the more sense

it makes to provide highly abstract classes—classes that furnish fairly standardized

features. The larger the number of options, the more sense it makes to allow

greater flexibility.

At the high level, the UI completely abstracts the device. Consider, for example,

that it makes little sense to do things like change the standard operations of keys,

buttons, or display options to conform with the characteristics of the thousands

of devices that might be targeted. With respect to such features, the MIDP

implementation on a particular device determines what the user sees and how the

user can respond to it. A standardized set of interactions is sustained.

At the low level, things change because the routines you implement represent the

creativity that makes an application or game interesting. It is not practical or even

advisable to try to abstract such activities. For this reason, the low-level UI comes

in play. It provides components and functionality that allow you to effect a wide

variety of different activities in various ways.

The Game API represents what might be viewed as a middle level of abstraction.

When you use the Game API, you have access to a small set of classes, such as

220 Chapter 9 n User Interface Basics

Figure 9.1
Levels of abstraction characterize the ME UI classes.

GameCanvas, Layer, and Sprite, which provide you with enhanced, standardized,

and in some cases abstract features that allow you to implement game behavior.

Class Hierarchy
The group of classes that provides the user interface is usually referred to as the

Liquid Crystal Display User Interface (LCDUI). Use of the LCDUI centers on the

screen and how the user interacts with it. This approach to the UI simplifies

program implementation but is still flexible in the face of a dizzying variety of

devices. Table 9.1 summarizes the high-level classes in the LCDUI packages. These

Class Hierarchy 221

Table 9.1 Selective LCDUI Class Summary

Class Description

Interfaces

Choice Provides the common interface used to manage a selection of items.

CommandListener Lets you create a listener for command events from the high-level UI.

ItemStateListener Lets you create a listener for changes to an Item object’s state.

UI System and Utility Classes

Display Represents the manager of the system’s display and input devices.

Font Obtains font objects along with their metrics.

Image A class for holding image data.

AlertType A helper class that defines the types of alerts you can create, such as
ALARM, CONFIRMATION, ERROR, INFO, WARNING.

Displayable An abstract base class for an object that can be displayed.

High-Level UI

Command Abstracts a user action on the interface.

Screen Classes

Screen Provides a base class for high-level UI components.

Alert A screen to alert the user to something. An Alert object is a screen. It
takes over the entire display, but it cannot have commands like other
Screen objects.

List A screen object that contains a list of choices.

TextBox A screen object used for editing text. A TextBox object uses the entire
screen and has additional features, such as a clipboard and cut, copy,
and paste tools.

Forms and Items

Form A screen that acts as a container for one or more Items.

Item A base class for something you can stick on a Form (or an Alert).

Space An object that is not interactive. It is used to set space between items.

(Continued)

222 Chapter 9 n User Interface Basics

classes are provided by the javax.microedition.lcdui and javax.microedition

.lcdui.game packages. For a complete view of the classes, access http://java.sun

.com/javame/reference/apis/jsr118/. As Table 9.1 shows, the classes that provide

these objects fall into the following functional categories:

n System or utility classes, such as Display, Font, AlertType, and Ticker.

n Low-level API classes, such as Canvas and Graphics.

n High-level API Screen classes, such as Alert, Form, List, and TextBox.

n Game API classes, among which are GameCanvas, Sprite, and TiledLayer.

n High-level API Form component classes. Such classes are derived from Item.

Among them are ChoiceGroup, DateField, Gauge, ImageItem, StringItem,

and TextField.

At the heart of the higher-level activities of the LCDUI is the display apparatus of

the MID. What appears on the display can be generically referred to as a screen.

One screen can be displayed at any given point in time. This situation is anal-

ogous to looking at the faces of cards in a deck. As you proceed through the deck,

ChoiceGroup Provides a UI component for presenting a list of choices.

DateField Provides a UI component to get the user to enter a date.

Gauge Displays a pretty graph bar to show progress.

ImageItem Provides an Item that is also an Image. (See earlier Item entry for
more information.)

StringItem An Item object for displaying a String.

TextField An Item used to edit text. A TextField is a simple control you can
embed inside a form.

Ticker An Item that scrolls a band of text along the display.

Low-Level UI

Graphics Provides 2D graphics tools.

Canvas The base class used to create low-level UI graphics.

Game API

GameCanvas The primary building block for user interfaces for games.

Sprite The primary visual element in games.

TiledLayer A visual element that provides a set of cells.

Layer An abstract class used to organize the display of visual objects.

LayerManager An object used to manage the rendering of layers.

Table 9.1 Continued

Class Description

http://java.sun.com/javame/reference/apis/jsr118/
http://java.sun.com/javame/reference/apis/jsr118/

Class Hierarchy 223

each card is a screen. The classes that provide screens can be viewed in four basic

groups:

n Low-level UI. Accessible through the Canvas class.

n Game API. Activities you implement using the game classes.

n Form. Displays groups of UI components.

n Complex components at a higher level. Such components are often sub-

classes of the Screen class. Examples are TextBox, List, and Form.

When you work with a screen, you create features that are seen and features that

are unseen. The services the MIDP offers become more visible the more they

move in the direction of the high-level components. Figure 9.2 illustrates the

Figure 9.2
The class hierarchy for the LCDUI.

LCDUI class hierarchy for most of the classes listed in Table 9.1. Note that

the classes in the Game API are included in the lcdui.game package, while others

are in the lcdui package. The class names shown in italics are abstract.

Display and Displayable
The Display class provides the foundation for visual interaction with a MIDlet.

There can be one and only one instance of the Display class in a MIDlet. The

Display object allows you to communicate with the device and to provide a

context in which to display visible screen components. To obtain an instance of

the display, you use the getDisplay() method. This method is static and returns

an object of the Display type. A call to the getDisplay() takes the following form:

Display display = Display.getDisplay(this);

The this keyword identifies the current instance of the MIDlet class. Table 9.2

furnishes a summary of a few of the methods in the interface of the Display class.

224 Chapter 9 n User Interface Basics

Table 9.2 Display Methods

Method Description

void callSerially(Runnable r) Serially calls a java.lang.Runnable object later.

Displayable getCurrent() Gets the current Displayable object.

static Display getDisplay(MIDlet m) Retrieves the current Display object for the MIDlet.

boolean isColor() Determines whether the device supports color.

int numColors() Determines the number of colors (or gray levels,
if not color).

setCurrent(Displayable) Designates the next Displayable object to be shown.

void setCurrent(Alert alert,
Displayable nextDisplayable)

Displays Alert, and then falls back to display
the nextDisplayable object.

setCurrentItem(Item) Brings the focus to the Displayable object
that contains the named Item object.

void setCurrent(Displayable
nextDisplayable)

Shows the nextDisplayable object.

getDisplay(MIDlet) This method returns an instance of the Display class
associated with the current MIDlet. It is called statically:
Display.getDisplay(this), and the this keyword
identifies the current instance of the MIDlet class.

vibrate() Used to cause the device to vibrate if it is capable of such
activity.

The Display()::getCurrent() method returns an argument of the Displayable

type. The Display::setCurrent() method renders visible the object you submit

to it as an argument. Such actions allow you to work readily with the primary

components that appear on the screen.

As shown in Figure 9.2, most of the large visible components you work with are

derived from the Screen and Canvas classes. The Screen and Canvas classes are

abstract and are derived from the Displayable class. The Alert, Form, List, and

TextBox classes are derived from the Screen class. To display or manipulate such

objects, you often use calls to methods provided in the abstract Displayable class.

Since the Displayable class is abstract, its interface becomes concrete in classes

derived from the Screen and Canvas classes. As Table 9.3 illustrates, the methods

the Displayable and other abstract classes furnish are concerned with component

Display and Displayable 225

Table 9.3 Displayable Methods

Method Description

addCommand(Command cmd) Associates a command to the Displayable
object.

int getHeight() Returns the height of the displayable area available
to the application. The measurement is in pixels.

Ticker getTicker() Returns the Ticker object associated with the
Displayable.

String getTitle() Returns the title of the Displayable.

int getWidth() Returns the width of the area available for use
by objects. The measurement is in pixels.

boolean isShown() Returns a Boolean value to indicate whether the
Displayable object is currently visible.

void removeCommand(Command) Makes it so that a given command is no longer
associated with a Displayable object.

void setCommandListener(CommandListener) Associates an instance of CommandListener
with the Displayable object. A call to this
method replaces previously associated instances of
CommandListener.

void setTicker(Ticker) Associates a ticker with a Displayable object. A
call to this method replaces previous associations.

void setTitle(String) Sets the title of the Displayable object.

protected void sizeChanged(int w, int h) This method must be overridden; it furnishes a way
to provide notice that the area available for a
Displayable object has been changed.

identification, sizing displayed entities, and associating commands with the entities.

In addition, the methods associated with the Ticker class provide a way to ensure

that a given Displayable object can be displayed in a timed way.

The DisplayTest Class

The DisplayTest class allows you to work with the basic interactions among the

Display, Displayable, Screen, and TextBox classes. You can find this class in the

folder for Chapter 9. It is also included in the NetBeans Chapter9MIDlets project.

The getDisplay() method first obtains the Display object associated with the

device. After that, as Figure 9.3 illustrates, you call the setCurrent() method to

change the TextBox object you see displayed. The argument type of the

setCurrent() method is Displayable, and since its class is derived from the

Screen class, an object of the TextBox type can be used as an argument.

In addition to the screen interactions, the DisplayTest class also makes use of

Command objects. Command objects let you associate events and handlers with

Displayable objects. In this way, when the MIDlet is invoked, it displays

‘‘Albert’’. (See Figure 9.4.) The text at the top of the screen identifies this as a first

name. When you click to invoke the Last Name event, you see ‘‘Gore’’. The title

of the display changes with the event. A fuller discussion of the Command class

appears in the next section. Here is the code for the DisplayTest class.

226 Chapter 9 n User Interface Basics

Figure 9.3
Classes derived from Displayable can be used as arguments to the setCurrent() method.

/*
* Chapter 9 \ DisplayTest.java
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class DisplayTest extends MIDlet implements CommandListener{

// #1 Attributes
private TextBox textBoxA,

textBoxB;
private Command quit,

change;
private Display currentDisplay;
//Constructor
public DisplayTest(){

// #2 Create an instance of TextBox
textBoxA = new TextBox("Here is the first name:",

"Albert", 20, TextField.ANY);
textBoxB = new TextBox("Here is the last name:",

"Gore", 20, TextField.ANY);
// #2.1 Create instances of Command
change = new Command("View Last Name", Command.EXIT, 1);
quit = new Command("Quit", Command.EXIT, 2);
// Associate commands with the textbox
textBoxA.addCommand(change);
textBoxB.addCommand(quit);
// #2.2 Associate the command with the TextBox instance
textBoxA.setCommandListener(this);
textBoxB.setCommandListener(this);

}

protected void startApp() throws MIDletStateChangeException{
// #3 set the first TextBox for display
currentDisplay = Display.getDisplay(this);
currentDisplay.setCurrent(textBoxA);

}
protected void pauseApp(){
}

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}
public void commandAction(Command command, Displayable displayable){

try{

Display and Displayable 227

if (command == change){
// #4 Cascaded calls to set the second TextBox for display
currentDisplay.getDisplay(this).setCurrent(textBoxB);

}

if (command == quit){
destroyApp(true);
notifyDestroyed();

}
}catch (MIDletStateChangeException ex){

System.out.println(ex þ " Caught.");
}

}//end commandAction
}// end class

In the lines associated with comment #1 in the DisplayTest class, you create a set

of attributes of the TextBox, Command, and Display types. Declaring the identifiers

as class attributes allows them to be used in different methods for purposes of

demonstration. In the lines trailing comment #2, the constructor provides two

instances of TextBox objects, textBoxA and textBoxB, and these are assigned to the

class attributes.

In the lines associated with comment #2.1, instances of the Command class are

created and assigned to the two Command class attributes, quit and change. At

comment #2.2, the addCommand() and setCommandListener() methods of the

TextBox class are called to associate the command events with the current MIDlet

(identified with the this keyword).

Given that the two TextBox objects can now generate events, functionality is

implemented to make the events cause displayed items to change. The first

change is effected in the startApp() method. In the lines following comment #3,

you use a static call to the getDisplay() method to retrieve a reference to the

current Display object. This is assigned to the class Display attribute, current-

Display. The argument for the getDisplay() method is of the MIDlet type, and

the this keyword provides a reference to the current instance of its class. You

then call the setCurrent() method of the Display class. This takes an argument

of the Displayable type, and the textBoxA object is of the TextBox class, a subclass

of Displayable. When the MIDlet is invoked, the first item displayed is textBoxA,

which furnishes the screen title ‘‘Here is the first name’’ and the TextBox text

‘‘Albert’’.

228 Chapter 9 n User Interface Basics

Within the scope of the commandAction() method, the getDisplay() and

setCurrent() methods are called once again. As the lines following comment #4

reveal, in this case a cascading set of calls accomplishes the task of designating

textBoxB for the current display. This action is invoked when the user clicks the

soft button for the ‘‘View Last Name’’ event. The display then shows ‘‘Gore’’, and

the display is refreshed so that the user sees the ‘‘Quit’’ option. Clicking the soft

button ‘‘Quit’’ closes the MIDlet. Figure 9.4 illustrates the sequence of changes

the Display class facilitates.

Command and CommandListener

The DisplayTest class in the previous section makes use of Command objects to

allow you to use the soft buttons to invoke events that render different TextBox

images on the display. Command objects can be associated with soft buttons and

enable you to assign events to any Displayable object. Such objects are associated

with three primary properties:

n Type. The types are BACK, CANCEL, EXIT, HELP, ITEM, OK, SCREEN, and STOP. The

Command object type determines how the label of the command is displayed.

Display and Displayable 229

Figure 9.4
As events are processed, the Displayable object (TextBox) is repeatedly rendered.

n Label. These are defined properties of the Command class. As the Display-

Test class shows (see Figure 9.4), the label is the test that identifies the

command.

n Priority. The priority of a Command usually begins at 1 for an event that

receives top priority. Levels 2 and higher designate lower priority.

As Table 9.4 shows, the Command class offers two constructions. One constructor

is characterized by three arguments. The other is characterized by four. The

difference between the two is that the four-argument constructor allows you to

230 Chapter 9 n User Interface Basics

Table 9.4 Command and CommandListener

Type Description

Command(String, int, int) Constructs a new Command object. The first argument defines the
label for the command. The second argument is the Command object
type. The third argument is the priority assigned to the Command
object.

Command(String, String,
int, int)

Constructs a new Command object. The first argument defines the
short label. The second argument defines the long label. The third
argument is the Command object type. The fourth argument is the
priority assigned to the Command object.

int getCommandType() Returns the type of the command.

String getLabel() Gets the label.

int getPriority() Gets the priority.

BACK Returns to the previous screen.

OK Provides a standard way to display OK.

CANCEL Provides a standard way to display Cancel.

EXIT Provides a standard way to quit a MIDlet.

HELP Asks for help.

ITEM Adds the command to an item list.

SCREEN Indicates that the command is of a custom type.

STOP Provides a standard way to issue a stop signal.

void commandAction
(Command, Displayable)

This is a method in the CommandListener interface. You
implement the CommandListener interface and then override
this one method, which is called when an argument of the Command
type is executed on any object of the Displayable type.

setCommandListener(MIDlet) This method is part of the interface of the Displayable class. It
allows you to register any object of the Displayable type with the
MIDlet so that the events the object generates can be processed.

provide an extended text for the command. Here is an example of how to use the

constructor:

Command cancelCommand;
cancelCommand = new Command("Cancel", Command.CANCEL, 1);

The arguments to the constructor create a Command object with ‘‘Cancel’’ as its

label, SCREEN as its display type, and a priority of 1. Table 9.4 provides an

overview of the Command class methods and properties. In addition to the Command

methods and properties, it also provides information on the CommandListener

interface and the setSetCommandListener() method of the Displayable class.

You use the CommandListener interface for one purpose: to handle the events

Command objects generate. The CommandListener interface provides one method,

commandAction().

To associate a class with the CommandListener interface, you implement the

CommandListener interface. This interface consists of one method, command-

Action(). Here is an abbreviated version of the DisplayTest class that shows the

implementation of the Command and CommandListener classes to process an event

generated by a TextBox object.

// See the DisplayTest class for an executable version of this code.
// This is an essential view of the DisplayTest for discussion only.
// #1 Implement the CommandListener interface
public class DisplayTest extends MIDlet implements CommandListener{

// #2 Declare identifiers for the Displayable and Command classes
private TextBox textBoXA;
private Command change;

public DisplayTest(){
// #2.1 Define an object derived from Displayable
textBoxA = new TextBox("Here is the first name:",

"Albert", 20, TextField.ANY);
// #3 Create an Instance of the Command
change = new Command("View Last Name", Command.EXIT, 1);
// #3.1 Associate commands with the textbox
textBoxA.addCommand(change);
// #3.2 Register the object that generates the event
textBoxA.setCommandListener(this);

}

Display and Displayable 231

// #4 Override (implement) the one method of the
//CommandListener interface
public void commandAction(Command command, Displayable displayable){

if (command = = change){
//Define an action

}
}//end commandAction

}// end class

In the lines trailing comment #1, you implement the CommandListener interface.

This obligates you to override (define) the commandAction() method. The defi-

nition of this method follows comment #4. In this instance, the definition

involves processing Command and Displayable arguments to identify the Command

object that has generated an event. A selection statement is used to evaluate the

event. In this case, only one event is used (change). If it is identified as the change

event, then it is processed.

A Displayable object can generate an event. The TextBox class is a subclass

(through Screen) of the Displayable class. Given this situation, as the lines

following comment #2 reveal, you create an instance of the TextBox class. Then at

comment #3 you create an instance of the Command class and assign it to the change

identifier. Following comment #3.1, you use the addCommand() method to

associate the change command to the TextBox object. Following comment #3.2,

you call the setCommandListener()method to register the TextBox object with the

this reference to the MIDlet object. Given that each Command object is identified

with a unique TextBox identifier (change), in the lines trailing comment #4 you

can use a selection statement within the commandAction() method to process the

event the TextBox object generates.

TextBox

The DisplayTest class also provides examples of the TextBox class. As has been

mentioned, the TextBox class is a subclass of the Displayable class and therefore

can be associated with the Command class. In the DisplayTest class, only the most

elementary use of the TextBox object appears. In subsequent programs, the

TextBox class is revisited in different contexts. For now, it is enough to note that it

allows you to copy, cut, and paste to or from a clipboard. You can also type

multiple lines of text into it. In addition, you can use a mask to screen the type of

text you allow to be entered in it. Table 9.5 provides basic discussion of some of

232 Chapter 9 n User Interface Basics

Display and Displayable 233

Table 9.5 TextBox Methods and Properties

Method Description

TextBox (String, String, int, int) Constructor. The first argument is of the String type
and allows you to furnish the object with a default body
of text. The second argument, also of the String type,
provides the title. The third argument, of the int type,
designates the maximum number of characters the object
displays. The last argument designates the appearance
mode of the TextBox. Modes are values defined in
the TextField class. Here is a summary list: PLANE,
ANY, PASSWORD, UNEDITABLE, SENSITIVE, NON_
PREDICTIVE, INITIAL_CAPS_WORD, INITIAL_CAPS_
SENTENCE.

void delete (int, int) Deletes characters. The first argument designates the
starting position for the deletion. The second argument
designates how many characters are to be deleted.

int getCaretPosition() Returns the current cursor position.

int getChars (char[]) Gets the contents of the TextBox as an array of chars.

int getConstraints() Returns the TextField constraint value that has been
applied to the TextBox object by the
setConstraints() method or through construction.

int getMaxSize() Gets the maximum number of characters that can
be stored in this TextBox.

String getString() Returns the current contents of the text area as a
String object.

setString(String) Replaces the existing text with the String object
provided as an argument.

void insert (char[], int, int, int) The first argument is a character array that provides
characters to be inserted into the text area. The second
argument indicates the starting index in the character
array of characters to be used. The third argument
establishes the number of characters to be inserted from
the starting index. The last argument designates the
index in the text area at which the insertion is to begin.

void insert(String, int) Inserts text into the text area defined by the String
argument into the position indicated by theint argument.

void setChars(char[] data,
int offset, int length)

Replaces chars with new values.

void setConstraints(int constraints) Changes the constraints.

int setMaxSize(int) Changes the maximum size of the text area.

void setString(String) Sets the contents to a string.

void setTitle(String) Sets the string for the title. If you supply a null
argument, then the title disappears.

int size () Returns the number of chars used.

234 Chapter 9 n User Interface Basics

the primary methods and properties of the TextBox class. See the NameGameTest class

further on in this chapter for discussion of and extended uses of the TextBox class.

Alert and AlertType

As Figure 9.2 shows, the Alert class is another class derived from the Displayable

class. As a Displayable class, the Alert class can be associated with Command

objects, and like the CommandListener class in relation to the Command class, it is

complemented by the AlertType class. The AlertType class is derived from the

Object class. Properties of the AlertType class allow you to define the type of

Alert you invoke.

The Alert class provides what might be viewed as a dialog. Like a dialog, there are

two basic forms of Alert object. One is analogous to a modeless dialog. It displays

for a set period and does not interrupt the scheduled actions of the application.

The other type of Alert object behaves like a modal dialog box. It halts the action

of the application until the user responds to it.

There are two basic constructors for the Alert class. As Table 9.6 discusses, the

first type takes only one argument, a string that the Alert displays. The second

constructor takes four arguments and allows you to designate the title of the

Table 9.6 Alert and AlertType Methods and Properties

Method Description

Alert (String) Constructs a simple Alert that automatically disappears after
a system-defined period of time. The argument provides the
title of the Alert object.

Alert (String, String,
Image, AlertType)

The first String argument is the title of the alert. The second
argument, also of the String type, provides text for the alert
to display. The third argument is null or of the Image type
and designates an image to be displayed. The last argument is
of the AlertType and sets the type of Alert to be used. See
the AlertType properties further on in this table.

int getDefaultTimeout() Gets the default timeout used by the MID.

Image getImage() Gets the Alert’s image.

String getString() Gets the Alert’s string.

int getTimeout() Gets the current timeout.

AlertType getType() Gets the current type.

void setImage(Image) Sets the image.

void setString(String str) Sets the Alert message.

void setTimeout(int time) Sets the timeout.

The NameGameTest Class 235

display, the text of the Alert object, a graphical image for the Alert object, and

the AlertType property to be applied to the Alert object. Here’s an example:

alert = new Alert("Title" , "Alert Text",
null, AlertType.CONFIRMATION);

display.setCurrent(alert);

The NameGameTest Class
The NameGameTest class allows you to explore a few uses of TextBox, Alert,

AlertType, and Command items. It allows you to enter the name of an author in a

field and then retrieve information on the author. Three Command objects are

associated with a single TextBox object, and when you process the events generated

by the objects, you obtain one of two Alert objects. One of these furnishes

information on the author whose last name you have typed. The other provides

help. If you do not know the name of an author, the help option shows the list of

choices. Here is the code for the NameGameTest class. You can find it in the Chapter 9

folder, and it is included in the NetBeans Chapter9MIDlets project.

/*
* Chapter9 \ NameGameTest.java
*
*/

void setType(AlertType) Sets the type.

void setCommandListener
(CommandListener)

There are some complexities associated with this version. It is
the same as the Displayable method, but you can also use
a null argument to designate that the default listener is to be
used.

ALARM AlertType property that alerts the user to an event for which
he has previously requested notification.

CONFIRMATION AlertType property that confirms a user’s action.

ERROR AlertType property that indicates that something bad
happened.

INFO AlertType property that indicates something informative.

WARNING AlertType property that warns the user of something.

boolean playSound (Display) AlertType property that plays a sound associated with an
Alert without having to actually construct the Alert.

Table 9.6 Continued

Class Description

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
public class NameGameTest extends MIDlet implements CommandListener{

// #1 Class attributes
private TextBox nameTextBox;
private Alert alert;
private Command quit, hint, go;
private String boxText;

public NameGameTest(){
boxText = "Name:";
// #2 Generate a text box
nameTextBox = new TextBox ("Author Facts",

boxText, 60, TextField.PLAIN);
// #2.1 Commands
quit = new Command("Quit", Command.EXIT, 2);
// #2.2 Create a list
go = new Command("View Info", Command.ITEM, 1);
hint = new Command("Hint", Command.ITEM, 1);
// #2.3 Register and add
nameTextBox.addCommand(go);
nameTextBox.addCommand(quit);
nameTextBox.addCommand(hint);
nameTextBox.setCommandListener(this);

}

protected void startApp() throws MIDletStateChangeException{
// # 3 Initial display
Display.getDisplay(this).setCurrent(nameTextBox);

}

protected void pauseApp(){
}

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}

// #4 Provide information
protected String getInformation(String authorName){

String info = new String();
// # 4.1 Strings contain line returns
if(authorName.equalsIgnoreCase("Shakespeare")){

236 Chapter 9 n User Interface Basics

info = "William Shakespeare (1564-1616)"
þ "\n" þ "Julius Caesar"
þ "\n" þ "Hamlet"
þ "\n" þ "King Lear";

}else if(authorName.equalsIgnoreCase("Hemingway")){
info = "Ernest Hemingway (1899-1961)"

þ "\n" þ "A Farewell to Arms"
þ "\n" þ "For Whom the Bell Tolls"
þ "\n" þ "The Old Man and the Sea";

}else if(authorName.equalsIgnoreCase("Austen")){
info = "Jane Austen (1731-1805)"

þ "\n" þ "Pride and Prejudice"
þ "\n" þ "Emma"
þ "\n" þ "Sense and Sensibility";

} else{
info = "Author not known.";

}
return info;

}

// #5 Process the command
public void commandAction(Command command, Displayable displayable){

try
{

if (command = = quit){
destroyApp(true);
notifyDestroyed();

}
if (command = = hint){

// #5.1 Clear the text field
alert = new Alert("Hint",

"Type: Shakespeare, Hemingway, or Austen",
null, AlertType.INFO);

Display.getDisplay(this).setCurrent(alert);
}
if (command = = go){

// #5.2 Clear the text field
nameTextBox.delete(0,boxText.length());
// #5.3 Create an instance of the alert
alert = new Alert("Author Info",

getInformation(nameTextBox.getString()),
null, AlertType.CONFIRMATION);

Display.getDisplay(this).setCurrent(alert);

The NameGameTest Class 237

// #5.4 reset the string
nameTextBox.setString(boxText);

}
}catch (MIDletStateChangeException me){

System.out.println(me þ " caught.");
}

}//end commandAction
}//end class

Construction and Definition

In the lines preceding comment #1 in the NameGameTest class, the class imple-

ments the CommandListener interface. This makes it necessary to define the

commandAction() method. This activity receives attention momentarily. Trailing

comment #1, several class attributes are declared. The first of these are a TextBox

attribute, nameTextBox; an Alert attribute, alert; and three Command attributes,

quit, hint, and go. In addition, an attribute of the String type is declared

(boxText).

The constructor of the NameGameTest class attends to creating an instance of the

TextBox class and associating Command objects with it. Accordingly, in the line

preceding comment #2, the boxText attribute is initialized with the value of

‘‘Name:’’, and then in the lines trailing comment #2, the TextBox constructor is

used to create an instance of the TextBox class that uses the value assigned

boxText for its second argument. The second argument is of the String type and

establishes the text displayed in the TextBox. The first argument is also of the

String type and provides the text that appears across the top of the display (or

screen) area. The third argument, of the int type, designates the maximum

number of characters allowed in the TextBox. In this instance this argument is set

to 60.

The last argument of the TextBox constructor designates the appearance mode of

the TextBox. As discussed in Table 9.5, the values used to set the mode are defined

in the TextField class. In this instance, the ANY mode is used. This mode

accommodates line breaks (‘‘\n’’) and text entry by the user.

At comment #2.1, the definition of a series of three Command objects begins. The

mode of the first Command object (quit) is EXIT. The mode is set using the second

argument of the Command constructor. The third argument sets the priority of the

Command object, and a value of 2 is supplied for it. The first argument provides the

238 Chapter 9 n User Interface Basics

name of the Command button, ‘‘Quit’’. The button appears in the lower left corner

of the display area, as Figure 9.5 shows.

Following comment #2.2, Command objects defined using the Command.ITEM mode

are created. As shown in Figure 9.5, the ITEMmode causes the Command object label

to be set in a list in a menu in the lower left of the display area. In this case, the

‘‘View Info’’ label is assigned to the go Command object and the ‘‘Hint’’ label is

assigned to the hint Command object. Both objects are also set with a priority of 1.

In the lines following comment #2.3, the Command objects are associated with the

nameTextBox attribute, which is of the TextBox type. As a Screen subclass, the

TextBox class can accommodate different commands and modes of command.

The TextBox::addCommand() method is called three times to associate the three

Command objects with it. After that, all that remains is to register the TextBox object

with the MIDlet. This is accomplished using the setCommandListener() method,

which takes the this keyword as its argument to identify the current MIDlet

instance.

The TextBox Cycle

The life of the TextBox object (nameTextBox) in the NameGameTest class begins in

the constructor, as was discussed in the previous section. Its life after that is fairly

basic. As is evident in the line following comment #3, when the MIDlet starts, the

static Display::getDisplay() method is used to retrieve the current instance of

the display. The nameTextBox is then set as the current display with a call to the

Display::setCurrent() method.

After that, the nameTextBox attribute is revisited according to its place in the event

cycle. One of the first stops in this respect occurs following comment #5.2 in the

commandAction() method. There, the TextBox::delete() method is used to

remove the term ‘‘Name:’’ from the text in the TextBox field. This is so that the

last name of the author can be used to search for the information about

the author. The first argument of the delete() method is of the int type and

designates the starting character index of the deletion. The second argument

stipulates the number of characters to be deleted. To obtain the number of

characters, the String::length() method is called using the boxText attribute.

After the information about an author is retrieved and displayed, the user is

returned to the starting point, where only the implied query of the ‘‘Name:’’ label

is visible. To reset the label, in the line associated with command #5.3, the

The NameGameTest Class 239

TextBox::setString() method is called. The argument for the method is of the

String type, and the boxText attribute is supplied. Having been removed,

the ‘‘Name:’’ text is now restored to the TextBox field, and the user can make

another query. Figure 9.5 illustrates a search initiated with ‘‘Hemingway’’. When

the user selects Menu and View Info, the information on Hemingway’s books

and life appears.

Alert Processing

In the NameGameTest class, the hint and go Command objects provide a way to

use objects of the Alert class in different ways. At the center of this activity, as

Figure 9.5 illustrates, are the ‘‘View Info’’ and ‘‘Hint’’ menu items. The messages

generated when these items are selected invoke different Alert objects. How this

is so becomes evident in the lines following comment #5, where the hint com-

mand is first processed in an if selection statement.

In the line preceding comment #5.1, the hint identifier is tested against the

command argument. If the evaluation proves true, then the flow of the program

enters the hint block and an Alert object is created and assigned to the alert

240 Chapter 9 n User Interface Basics

Figure 9.5
The TextBox and Command classes allow the user to input data and process it.

identifier. The first two arguments of the Alert constructor are of the String

type. The first argument is the title that appears at the top of the display. The

second is the message text of the Alert field. In this case the message consists of

the last names of three authors, Shakespeare, Hemingway, and Austen. The third

argument to the Alert constructor establishes the mode of the alert. The value for

this argument is defined in the AlertType class. In this case, the INFO property is

used, which provides a distinctive, fairly intrusive succession of tones.

With the completion of the construction activity for the Alert object, the

Display::getDisplay() method is called to retrieve the current Display object,

and the Display::setCurrent() is used to make the alert object visible. The user

who clicks the Hint menu item and then the SELECT button can see the list of

names that can be entered in the TextBox field. The Alert object displays for a few

seconds only and closes automatically.

The construction of the Alert object in the lines following comment #5.3

involves a call to the getInformation() method, which is defined as part of the

interface of the NameGameTest class. The definition of the method follows com-

ment #4. The method takes a String argument, which provides the last name of

an author. This is a string that the user types in the text box constructed in the

lines accompanying comment #2. The name the user typed is retrieved in the

lines following comment #5.3 using the TextBox::getString() method.

Fed to the getInformation() method, as the definition of the method shows, the

string is used in a set of selection statements to retrieve information about an

author and assign it to the info identifier, which is a local value of the String

type. The getInformation() method returns this value. In the definition of the

information returned by the method, several line returns are used to format the

text. As Figure 9.6 illustrates, displaying the text reveals that the Alert objects can

handle multiple lines of text.

The value returned is used for the second argument of the Alert constructor

associated with comment #5.3. It furnishes the second argument, which is

the text the Alert object displays. When the Alert object appears, it is

accompanied by a sound. The tone you hear is established using the third

argument of the constructor, which is of the AlertType class. The specific

property used is AlertType.CONFIRMATION. This provides a series of three

descending tones. Figure 9.6 illustrates the information as it is displayed by

the Alert object.

The NameGameTest Class 241

Lists
The List class provides an object that can be used to display a series of elements,

each of which can individually invoke a command. There are three modes of List

objects. Two of these modes designate List objects that can be selected one at

time. Field values obtained from the Choice class are used to identify these two

modes of the List object. They are the IMPLICIT and EXCLUSIVE fields. As Table 9.7

indicates, the IMPLICIT mode allows you to display unadorned lists of items. The

EXCLUSIVE mode allows you to precede displayed items with radio buttons, as is

shown in Figure 9.7. You can select only one item at a time from such lists, and as

you do so the radio button is activated. The other mode is MULTIPLE. This mode of

list object allows you to select as many items from a list at a time as you want, and

with each selection, a checkbox preceding the item is activated. Thismode of list is

illustrated by Figure 9.8, in which several authors are selected at one time.

Lists with Single Selection
When you create an instance of a list, you usually associate Command objects with

it. The Command object then allows you to process messages issued by the list. To

process messages for specific items, you can make use of the getSelectedIndex()

242 Chapter 9 n User Interface Basics

Figure 9.6
The Alert class provides a way to display successive lines of text.

Lists with Single Selection 243

Table 9.7 List Methods and Properties

Method or Field Description

List (String, int) Constructs a List object. The first argument is the title of the list as
shown at the top of the screen. The second argument designates the
type of the list: IMPLICIT, EXCLUSIVE, MULTIPLE.

List (String, int,
String[], Image[])

Constructs a List object. The first argument is the title of the list as
shown at the top of the screen. The second argument designates the
mode of the list: IMPLICIT, or EXCLUSIVE, MULTIPLE. The third
argument is an array of the String type providing the items that
make up the list. The fourth argument is an array of items of the
Image type that can be used as elements. For a List object without
Image objects, use null for the fourth argument.

int append (String,
Image)

Adds an element to a List object and identifies it using an Image*
object. The element added can be designated by an object of the
String type, the Image type, or both.

void delete (int) Removes an element from a List object. The argument is of the int
type and designates the element to be deleted.

void insert (int,
String, Image)

Inserts an element into a List object. The object added can
be designated with a String object, an Image* object, or both.

void set (int, String,
Image)

Sets or resets an element in List object. The object set can
be designated with a String object, an Image* object, or both.

Image getImage (int) Returns the Image* reference associated with an element. The
argument is of the int type and designates the image to be retrieved.

String getString (int) Returns the String reference associated with an element. The
argument is of the int type and designates the element to be
retrieved.

boolean isSelected (int) Returns a Boolean value indicating whether a particular element is
currently selected.

int getSelectedIndex () Returns the currently selected element index.

void setSelectedIndex
(int, boolean)

Sets a selection by element index.

int getSelectedFlags
(boolean[])

Fills an array of the Boolean type with true or false values indicating
whether the elements in a List object have been selected. This
works most readily with lists of the MULTIPLE mode.

void setSelectedFlags
(boolean[])

Directly sets the selections based on an array of Boolean values
corresponding to the elements to be set.

int size() Returns the number of elements in the list.

IMPLICIT Allows one item at a time to generate an event. The items in the
List object appear without checkboxes or radio buttons. This field is
inherited from the Choice class.

EXCLUSIVE Allows one list item at a time to generate an event. The items in the
List object appear with radio buttons. This field is inherited from
the Choice class.

(Continued)

and getString()methods of the List class. The ListTest class provides you with

an example of how to process messages issued for lists defined using the

EXCLUSIVE and IMPLICIT modes. You can alter the line preceding comment #1 to

view the effects of the different modes. The ListTest class is in the Chapter 9

folder and is included in the Chaper9MIDlets project for NetBeans. Here is the

code for the class. Discussion of the class appears in the sections that follow.

/*
* Chapter 9 \ ListTest.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*; // for Vector
public class ListTest extends MIDlet implements CommandListener{

private Form form;
private Command quit, begin, back, select;
private Vector authorInfo;
private List authorList;
private Alert alert;
// Create an array for the list
private String[] choices = { "Shakespeare", "Austen", "Camus",

"Hemingway", "Vonnegut", "Grass"};
public ListTest(){

// Construct the list
// or List.IMPLICIT

authorList = new List("Authors", List.EXCLUSIVE, choices, null);
// #1 Commands for the authorList
select = new Command("Select", Command.OK, 1);
back = new Command("Back", Command.BACK, 2);
authorList.addCommand(select);

244 Chapter 9 n User Interface Basics

MULTIPLE Allows any number of items to be selected simultaneously. They
can generate events individually or as a group. The items in the List
object appear with checkboxes. The checkboxes are activated
as you select items from the list. This field is inherited from the
Choice class.

Table 9.7 Continued

Method or Field Description

*Objects of the Image type are dealt with in Chapter 10.

authorList.addCommand(back);
authorList.setCommandListener(this);

// #2 Create an instance of a form
form = new Form("Information on Authors");
begin = new Command("Begin", Command.SCREEN, 1);
quit = new Command("Quit", Command.EXIT, 2);
form.addCommand(begin);
form.addCommand(quit);
form.setCommandListener(this);

}// end ListTest

// #3 Set the form and populate the Vector object
protected void startApp() throws MIDletStateChangeException{

Display.getDisplay(this).setCurrent(form);
setUpVector();

}

protected void pauseApp(){
}

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}

public void commandAction(Command command, Displayable displayable){
System.out.println("commandAction(" þ command þ ", " þ displayable þ

") called.");
try{

// #4 Handle events from the Form object
if (displayable = = form){

if (command = = quit){
destroyApp(true);
notifyDestroyed();

}
// #4.1
if (command = = begin){

Display.getDisplay(this).setCurrent(authorList);
}

}// end if

// #5 Handle events from the List object
if (displayable = = authorList){

Lists with Single Selection 245

if (command = = select){
String index = new String();
// #5.1
index = String.valueOf(authorList.getSelectedIndex());
String itemOfIndex;
// #5.2
itemOfIndex = authorList.getString(

authorList.getSelectedIndex());
alert = new Alert(getInformation(itemOfIndex),

" Index:" þ index þ "\n"
þ getInformation(itemOfIndex),
null, AlertType.INFO);

Display.getDisplay(this).setCurrent(alert);
}
else if (command = = back){

Display.getDisplay(this).setCurrent(form);
}
else{

System.out.println("Not found.");
}// end else if

}// end if
}catch (MIDletStateChangeException me){

System.out.println(me þ " caught.");
}//end catch

}//end commandAction

// #6 Access information
protected String getInformation(String authorName){

String info = new String();
// # 6.1 Strings contain line returns
for(int itr =0; itr < authorList.size();itrþþ){

if(authorName.equalsIgnoreCase(choices[itr])){
info = authorInfo.elementAt(itr).toString();

}
}//end for
return info;

}// end getInformation

// #7 Add information to the vector
protected void setUpVector(){

authorInfo = new Vector();
String info = new String();
info = " William Shakespeare (1564-1616)"

246 Chapter 9 n User Interface Basics

þ "\n" þ " Julius Caesar"
þ "\n" þ " Hamlet"
þ "\n" þ " King Lear";
authorInfo.addElement(info);
info = " Jane Austen (1731-1805)"
þ "\n" þ " Pride and Prejudice"
þ "\n" þ " Emma"
þ "\n" þ " Sense and Sensibility";
authorInfo.addElement(info);
info = " Albert Camus (1913-1960)"
þ "\n" þ " The Stranger"
þ "\n" þ " The Plague"
þ "\n" þ " The Fall";
authorInfo.addElement(info);
info = " Ernest Hemingway (1899-1961)"
þ "\n" þ " A Farewell to Arms"
þ "\n" þ " For Whom the Bell Tolls"
þ "\n" þ " The Old Man and the Sea";
authorInfo.addElement(info);
info = " Kurt Vonnegut (1922-2007)"
þ "\n" þ " Slaughterhouse-Five"
þ "\n" þ " The Sirens of Titan"
þ "\n" þ " Cat’s Cradle";
authorInfo.addElement(info);
info = " Gunter Grass (b. 1927)"
þ "\n" þ " The Flounder"
þ "\n" þ " The Tin Drum"
þ "\n" þ " Dog Years";
authorInfo.addElement(info);

}// end setUpVector
}// end class

Construction and Definition

In the lines preceding comment #1 of the ListTest class, a number of class

attributes are defined. To control the general actions of the MIDlet, the quit and

begin attributes are declared. To control and process events from the List object,

the back and select attributes are declared. These are all of the Command type. To

store the names of authors and information about them, an attribute of the

Vector type is declared (authorInfo), and following that, a List attribute,

authorList, is declared. To process information, an Alert attribute is then added,

Lists with Single Selection 247

and immediately after that, an array of the String type, choices, is defined with

the names of six authors.

In the line immediately before comment #1, the constructor for the List class is

called. The first argument provides the title of the screen in which the items in the

list appear. In this case, the value provided is ‘‘Authors’’, as the right panel of

Figure 9.7 reveals. The second argument is the mode value obtained from the

Choice class. The List class inherits these values. The two values available for

single-choice List objects are EXCLUSIVE and IMPLICIT. In this instance, the

EXCLUSIVE value is designated, which provides for radio buttons. The third

argument to the List constructor is a reference to an array of String values to be

used for the List elements. The choices array is used as this argument. The final

argument is also an array, this one of the Image type. In this instance, no Image

objects are associated with the items assigned to the List object, so a value of null

is supplied.

To process list items, it is necessary to register the List object with the MIDlet.

Accordingly, in the lines following comment #1, the select and back attributes

are defined. The label used for select is ‘‘Select’’, and this command allows the user

to generate an event associated with a given single item in a list. The addCommand()

method is used to associate the select attribute with the authorList object. The

setCommandListener() method then associates the authorList object with the

MIDlet. Following comment #2, the same operations are performed with respect to

the begin and quit attributes. In this case, the result is that messages generated by

the Form object (form) can be processed.

Using a Vector Object for Data

After the Form and List objects for the MIDlet have been attended to, at com-

ment #3 the startApp()method is defined. In this case, the Display object is asso-

ciated with the form object using the Display::setCurrent() method. Following

that, a call to the setUpVector() method is called. Calling the method at this

point defines the authorInfo Vector so that it can be used during the life of the

MIDlet.

The setUpVector() method defines the authorInfo so that it contains six ele-

ments, each of which furnishes biographical information about a given author.

To populate the Vector object, a redundant approach is used. The String

identifier info is repeatedly assigned a long string with the desired information,

and then info is used as an argument to the Vector::addElement() method.

248 Chapter 9 n User Interface Basics

In this way, with each successive call to the addElement() method, an indexed

element providing author information is added to the end of the Vector object.

The indexes of the Vector object begin as 0, corresponding to those of the

choices array. The information for the choices array, the authorList List object,

and the authorInfo Vector object are all the same and represent the same authors.

Processing Messages

To process messages issued by a List object, you retrieve the value associated

with the Command object associated with the List object. To process the messages,

you override the commandAction() method, which is provided by the Command-

Listener interface. In the definition of the ListTest class, there are two groups of

Command messages. One group applies to the List object. The other applies to the

Form object.

One way to distinguish a Form object message from a List object message is to

evaluate the value passed by the Displayable argument of the commandAction()

method. The Displayable argument (in this case displayable) allows you to use

a selection statement to test for the name of the Displayable object that has

issued a message. By using the result of this evaluation, you can then channel the

flow of the program into further selection blocks to evaluate the identity of the

Commandmessages. Accordingly, as is evident in the lines following comment #4, a

selection statement first handles messages issued by the Form object (form). If the

message is found to be from the form object, the flow of the program enters the

outer selection block and the Command messages associated with the Form object

(quit and begin) can then be processed.

The procedure used to process messages associated with the Form object can also

be used to process messages associated with the authorList object. The List class

is derived from the Displayable class, as is the Form class, so a selection statement

can be used to evaluate the Displayable argument of the commandAction()

method with relation to the authorList object. If the Displayable object is

identified as authorList, then the flow of the program enters the selection block

following comment #5, and specific messages pertaining to the List object can be

dealt with.

In the lines following comment #5.1, one approach to processing a Listmessage

is shown to involve calling the List::getSelectedIndex() method. This method

retrieves the index of the currently selected element in the List object. The

value returned is an integer, so to convert it so that it can be displayed, the

Lists with Single Selection 249

String::valueOf() method is used. The resulting String reference is assigned to

the index identifier, which is of the String type.

To retrieve the text associated with a given List index, the List::getString()

method can be called. The getString()method takes an int value as an argument

and returns a String reference. This is the approach used in the lines following

comment #5.2. In this case, the value returned by the getSelectedIndex() is used

as an argument to the getString() method. The value retrieved is assigned to the

itemOfIndex identifier.

The itemOfIndex is used in the first argument for the constructor for the Alert

object (alert). To use the identifier, a call to the getInformation() method is

made. This method takes an object of the String type as its argument, and on the

basis of the information provided, returns the name and dates of the author. This

information appears in the title of the screen. For the second argument of the

Alert constructor, as Figure 9.7 illustrates, the index of the selected item is

displayed along with the full text of the author’s biographical information.

250 Chapter 9 n User Interface Basics

Figure 9.7
The EXCLUSIVE option in the definition of a List object provides buttons to indicate exclusivity.

The getInformation() method is defined in the lines following comment #6. As

the line following comment #6.1 shows, the List::size() method is used to

return the highest index value of the authorList object. This value is then used to

control the number of times the for repetition block iterates. With the iteration

of the for block, the values assigned to the authorName Vector object are com-

pared to those assigned to the choices array. If the comparison proves true, then

the Vector::elementAt()method is called to return the indexed object. Since the

author information is stored in a Vector object, it is necessary to call the

toString() method to make it suitable for assignment to the info identifier,

which is of the String type. The method then returns the value assigned to the

info identifier.

Lists with Multiple Selection
Since the List and Form classes are derived from the Displayable class, the

identity of a specific List can be distinguished from that of the Form or another

List object by using a selection statement to process the second argument of the

commandAction() method. In the ListWithMultipleTest class, the approach to

processing messages is simplified somewhat from the approach used in the

ListTest class. The emphasis is on bringing messages that relate to the List

object to the forefront. This makes it easier to see how the List::getSelected-

Flags()method can be used to retrieve an array of all currently selected items in a

List object.

The array the getSelectedFlags() method retrieves is of the Boolean type, and

after it has been retrieved, it can then be traversed to identify the selected List

elements. Showing this activity is the central focus of the ListWithMultipleTest

class. You can find the ListWithMultipleTest class in the Chapter 9 code folder.

As with the other classes discussed in this chapter, it is also included in the

NetBeans Chapter9MIDlets project. Here is the code for the class. Discussion

appears in the section that follows.

/*
* Chapter 9 \ ListWithMultipleTest.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*; // for Vector

Lists with Multiple Selection 251

public class ListWithMultipleTest extends MIDlet implements CommandListener{
// #1
private Display display;
private Command exit, selectAuthor;
private List listChoices;
private Vector authorInfo;
private Alert alert;
private String title;
private String[] choices = { "Shakespeare", "Austen", "Camus",

"Hemingway", "Vonnegut", "Grass"};

public ListWithMultipleTest(){
display = Display.getDisplay(this);
// #2 Construct the list
title = "Author Information";
listChoices = new List(title, List.MULTIPLE, choices, null);
// Alternatively, use the append() method
//listChoices.append("Marquez", null);

exit = new Command("Exit", Command.EXIT, 1);
selectAuthor = new Command("View", Command.SCREEN,2);
// Add commands, listen for events
listChoices.addCommand(exit);
listChoices.addCommand(selectAuthor);
listChoices.setCommandListener(this);

}

// #3
public void startApp(){

display.setCurrent(listChoices);
setUpVector();

}

public void pauseApp(){
}
public void destroyApp(boolean unconditional){
}

public void commandAction(Command command, Displayable displayable){
// #4
if (command = = selectAuthor)

252 Chapter 9 n User Interface Basics

{
// Create a Boolean array the size of the listed items
boolean selected[] = new boolean[listChoices.size()];
// 4.1 Populate the array with true (selected) and false items
listChoices.getSelectedFlags(selected);
// #4.2 Iterate through the array and find the seletected items
StringBuffer selectedInfo= new StringBuffer();
for (int i = 0; i < listChoices.size(); iþþ){

if(selected[i] = = true){
selectedInfo.append("-- - -- - - - - - - - -\n");
selectedInfo.append(authorInfo.elementAt(i).toString() þ "\n");

}// end if
}//end for
// #4.3

alert = new Alert(title,
selectedInfo.toString(),
null, AlertType.INFO);

Display.getDisplay(this).setCurrent(alert);
}//end if
else if (command = = exit)
{

destroyApp(false);
notifyDestroyed();

}
}// end commandAction

// #5 Add information to the vector
protected void setUpVector(){

authorInfo = new Vector();
String info = new String();
info = " William Shakespeare (1564-1616)"
þ "\n" þ " Julius Caesar"
þ "\n" þ " Hamlet"
þ "\n" þ " King Lear";
authorInfo.addElement(info);
info = " Jane Austen (1731-1805)"
þ "\n" þ " Pride and Prejudice"
þ "\n" þ " Emma"
þ "\n" þ " Sense and Sensibility";
authorInfo.addElement(info);

Lists with Multiple Selection 253

info = " Albert Camus (1913-1960)"
þ "\n" þ " The Stranger"
þ "\n" þ " The Plague"
þ "\n" þ " The Fall";
authorInfo.addElement(info);
info = " Ernest Hemingway (1899-1961)"
þ "\n" þ " A Farewell to Arms"
þ "\n" þ " For Whom the Bell Tolls"
þ "\n" þ " The Old Man and the Sea";
authorInfo.addElement(info);
info = " Kurt Vonnegut (1922-2007)"
þ "\n" þ " Slaughterhouse-Five"
þ "\n" þ " The Sirens of Titan"
þ "\n" þ " Cat’s Cradle";
authorInfo.addElement(info);
info = " Gunter Grass (b. 1927)"
þ "\n" þ " The Flounder"
þ "\n" þ " The Tin Drum"
þ "\n" þ " Dog Years";
authorInfo.addElement(info);

}// end setUpVector
}// end class

Construction and Definition

In the lines following comment #1 of the ListWithMutipleTest class, most of the

attributes defined for the ListTest class are used once again. One difference in

the attribute list is the inclusion of title, which provides a way to furnish the

screen title for the List object as it is refreshed. Another difference is that no Form

attribute appears. To simplify the implementation of this class, all actions are

accomplished by refreshing the List object alone. The name of the List attribute

is listChoices.

In the lines following comment #2, after assigning a string, ‘‘Author Informa-

tion’’, to the title attribute, a call is made to the List constructor and the new

instance of the List class is assigned to the listChoices attribute. The title

attribute is used as the first argument in the constructor. Again, this provides the

text for the screen title, as is shown in Figure 9.8.

For the second argument, the MULTIPLE field is used to set the mode of the List

object. The List class inherits the definition of this field from the Choice class,

254 Chapter 9 n User Interface Basics

which is defined as an interface. Use of the MULTIPLE mode creates a List object

that displays items preceded by checkboxes. Checking a box activates the item

associated with it, and no limit applies to the number of items that can be

checked.

For the third argument to the List constructor, the choices array is provided.

This array is of the String type and furnishes the names of a group of authors.

The authors’ names are the same as those named for the ListTest class. As a

matter of interest only, notice that the List::append() method is shown

immediately after the construction statement, commented out. This line is

included as a reminder that such methods as delete() and append() can be used

dynamically to add or remove List elements.

To associate Command objects with the listChoices attribute, the List:

:addCommand() method is called. In this way, the exit and selectAuthor attri-

butes identify the only two messages the ListWithMutipleTest class processes.

The setCommandListener() method is then used to register the selectAuthor

attribute with the MIDlet. At comment #3, the listChoices object is set as the

current object for the MIDlet as it is started.

Processing Messages

Processing multiple simultaneous messages most centrally involves making a call

to the List::getSelectedFlags() method. This method iterates through the

items in the currently active List object and identifies those that have been

selected. To perform its work, the getSelectedFlags() method requires an array

of the Boolean type, so in the lines following comment #4, an array (selected) is

defined.

To define the selected array, a call is made to the Boolean constructor, and as an

argument to the constructor, the listChoices attribute is used to call the

List:size()method. The value returned by the size()method sets the length of

the array, so whenever the ListWithMultipleTest class processes a message issued

by a List item, it can dynamically determine the number of items in the List.

The next step, shown in the line following comment #4.1, is to call the

getSelectedFlags() method and use the selected array as an argument. The

getSelectedFlags()method takes a reference to a Boolean array as an argument,

and its action is to set the true and false values associated with the items in the

Lists with Multiple Selection 255

array the reference identifies. By default items are set as false; they are set to true

when selected.

The goal then becomes to retrieve the text values associated with the List items

and to concatenate these values with the biographical information stored in the

authorInfo Vector object. To make it so that the information gathered for

concatenation can be processed, a StringBuffer object (selectedInfo) is defined

in the line trailing comment #4.2. A StringBuffer object differs from a String

object because a StringBuffer object can grow dynamically after it has been

constructed. The means of accomplishing this is the StringBuffer::append()

method, which takes an argument of the String type.

To retrieve selected items and build the text assigned to the selectedInfo

identifier, a for repetition statement is used. The List::size() method controls

the iteration of the repetition block. As the block iterates, it traverses the selected

array. With each repetition, an if selection statement tests the value of indexed

items in the selected array against true. If the test proves true, then the flow of

the program enters the selection block. There, a dashed line and the appropriate

autobiographical information are appended to the selectedInfo object.

To retrieve the biographical information, the Vector::elementAt() method is

called. Since the index values of the List and Vector objects identify the same

author information, the elementAt() method can find the appropriate text for

each selected author. However, since the text stored in the Vector object is

associated with the Object type, the toString() method must be used to convert

it so that it can be appended to the StringBuffer object.

After the information associated with all of the selected List items has been

appended to the selectedInfo object, an Alert object is used to display it. For the

first argument of the Alert constructor, no conversion is necessary, because the

title attribute is used. For this reason, the title of the screen does not change as it

is refreshed. Since the second argument of the Alert constructor is of the String

type, the StringBuffer::toString() method must be called to convert the text

from the StringBuffer object (selectedInfo) into a String object. Figure 9.8

illustrates the information displayed after three authors, Shakespeare, Camus,

and Vonnegut, have been selected.

256 Chapter 9 n User Interface Basics

Conclusion
In this chapter, you have reviewed the first of several classes in the user interface of

the MIDP classes. These include the Display, Displayable, Command, Commmand-

Listener, Alert, TextBox, and List classes. The AlertType and Choice classes,

which are defined as interfaces, provide field values for setting the modes of Alert

and List options. To process messages issued by List objects, you can use selection

statements that test for both Displayable and Command arguments. List, Form, and

TextBox objects are all of the Displayable type. With respect to the List class, the

key modes are defined by the EXCLUSIVE and MULTIPLE values. The EXCLUSIVEmode

allows for the selection of only one item at a time. The MULTIPLE mode allows for

the selection of several items at a time. For filtering simultaneous messages issued

by List objects, you can make use of the getSelectedFlags() method.

Conclusion 257

Figure 9.8
The MULTIPLE option provides checkboxes.

This page intentionally left blank

Using Graphics

This page intentionally left blank

Forms and Items

In previous chapters, you have already glimpsed several uses of the Form class.

This chapter shows you how to use the Form class in conjunction with the Item

classes. The Form class provides a convenient way to organize components for

display, and the Item class is the base class of the set of classes that furnish several

useful ways of organizing and manipulating text and other types of information

to supplement the operations in your display. In this chapter, you concentrate on

the TextField and StringItem classes, reviewing work with the CommandListener

and ItemStateListener interfaces to process the events that apply to the objects

of the classes. You also work with the Spacer, Font, and String classes, investi-

gating how to make use of these resources to enhance your options as you

develop displays. Methods and properties provided by the Form and Item classes

repeatedly come into play as you work with the layout and formatting activities

involved with the Item subclasses. By developing two basic MIDlets that use

scenarios drawn from text-oriented games, you explore many of the interface

features of the Form and Item classes and at the same time prepare the way for

work in Chapter 11 involving the Image, Gauge, and other classes associated with

the Form and Item classes.

General Features of the Item and Form Classes
Figure 10.1 illustrates the relationships that exist between the abstract Item class,

the classes derived from it, and the ItemCommandListener interface. In addition, it

traces the relationshipbetween the Form class, the Item class, and the ItemStateListener

261

interface.AForm classobjectcancontain instancesof the subclassesof theItem class.You

call the Form::append() method to add reference to the Item subclasses to the Form

object. After adding an Item object to a Form object, to manage the events associated

with the Item class objects, your two main options are the ItemStateListener

and the ItemCommandListener interfaces. You use the ItemCommandListener

262 Chapter 10 n Forms and Items

Figure 10.1
Classes derived from the Item class implement the ItemCommandListener interface.

most extensively with the Form object. For the classes derived from the Item

class, you use the ItemStateListener interface. Even then, if you make use of the

notifyStateChanged()method of the Item subclasses,manydifferent approaches to

message processing remain open to you.

No t e

For a summary of the methods and properties of the Item class, see the sidebar ‘‘Overview of the
Item Class,’’ which appears toward the end of this chapter.

The Form Class
The Form class allows you to organize and manage objects of types derived from

the Item class. An object of the Form class can contain one or more instances of

any of the classes associated with the Item class, and you can assign or order these

objects in any combination. As Figure 10.1 shows, the classes are as follows:

StringItem, ImageItem, TextField, ChoiceGroup, DateField, Gauge, and Spacer.

While the Form object serves as a container for the objects of the classes derived

from the Item class, how the objects appear after you associate themwith the Form

is in part dependent on the MID.

In previous chapters, you have used an object of the Form type to process

commands. To add a command to a Form object, you employ the addCommand()

method, which the Form class inherits from the Displayable class. To process

messages related to Item objects, you use a different approach. To start with, to

associate objects of the classes derived from the Item class with the Form object,

you employ the insert() and append() methods, and after associating them,

you can then use the delete() and set() methods to further manipulate them.

To process messages, you implement the ItemStateListener interface when

you define your MIDlet class. You can then call the itemStateChanged()

method. Table 10.1 provides discussion of the Form class. Included in this table

is the itemStateChanged() method of the ItemStateListener interface, along

with a short review of some of the methods the Form class inherits from the

Displayable class. Primary examples of how to use the Form object in asso-

ciation with Item objects are shown in this chapter in the FormTextFieldTest

class.

The Form Class 263

264 Chapter 10 n Forms and Items

Table 10.1 Form

Method Description

Form (String) Constructs a form with a given title. The sole argument is of the
String type and provides a name for the Form object.

Form (String, Item[]) Constructs a form with a title. The second argument is an array
of the Item type. The array populates the Form object with the
elements furnished by the array.

int append (Image) One of three overloaded versions. Appends an object of the
Image type to the Form object. The appended Image reference
appears at the bottom of the display.

int append (Item) One of three overloaded versions. Appends an object of the
Item type to the Form object. The object appended appears at
the bottom of the display.

int append (String) One of three overloaded versions. Appends an object of the
String type to the Form object. The appended String object
appears at the bottom of the display.

void delete (int) Takes an integer as an argument. The integer designates the index
of an element in the Form object. The method deletes the element
designated by the argument. When you delete an element from a
Form object, the size of the object is decreased by one.

deleteAll() Completely clears a Form object of all the elements (Item
objects) you have assigned to it.

Item get (int) Takes an integer as an argument. The integer designates the
index of an element in the Form object. The method returns the
element designated by the argument.

int size() Returns an integer that tells you the number of elements in the
Form object.

void insert (int, Item) Inserts an Item reference. The first argument is of the int type
and designates the index of the Form to be associated with the
newly inserted element. The second argument is of the Item
type and provides the object to be inserted.

void set (int, Item) Sets an Item reference at a particular index. The first argument
designates the index of object within the Form container. The
second argument designates the Item object to be set.

void setItemStateListener
(ItemStateListener)

Associates a listener with the Form object so that events
generated by elements within it can be handled. Takes an
ItemStateListener object as its argument.

ItemStateListener::itemChanged
(Item)

This method is not a Form method. It is the sole method of the
ItemStateListener interface, and you implement this
method to process events generated by Item objects associated
with the Form object. It takes an Item reference as an
argument and is called whenever an Item object is changed.

Inherited Displayable methods Among these are addCommand(), getTicker(), getTitle(),
isShown(), setCommandListener(), setTicker(), set-
Title().

TextField
One of the most commonly used of the Item subclasses is the TextField class. It

provides a convenient way to format text as it is entered or displayed. To apply

formatting to the text processed by TextField objects, you can use one of several

TextField properties. Among these are the DECIMAL and ANY properties, which are

reviewed in Table 10.2. Since a TextField object is a subclass of Item, you can

store it in an array of the Item type. You can then handle the messages from the

TextField object by using the itemChanged() method, which is provided by the

ItemStateListener interface.

TextField 265

Table 10.2 TextField

Method Description

TextField (String,
String, int, int)

Constructs a new TextField. The first argument is of the String
type and provides a label for the text field. The second argument,
also of the String type, provides the initial text for the text field.
The third argument is of the int type and provides the maximum
length of the text field. The last argument is a TextField
property that allows you to control the masking and other
properties of the field.

void setConstraints (int) Allows you to set the Constraints property applied to the
TextField object. (See further on in this table for a selected list.)

void insert (char[],
int, int, int)

Inserts characters into the field. The first argument is an array of
the character type from which the text is to be taken. The second
argument is the starting index position in the array from which text
is to be taken. The third argument indicates the number of
characters to be taken from the array. The fourth argument is the
starting index position in the field to which the text is to be copied.

void insert (String src,
int position)

Inserts a string into the field. The first argument provides the text
to be written to the field. The second argument indicates the
starting index position in the field to which the characters are to be
written.

void delete (int offset, int) Removes characters from the field. The first argument is the index
position in the field at which the deletion is to begin. The second
argument indicates the number of characters to be deleted.

int getCaretPosition () Retrieves index of the current cursor position in the field.

int getChars (char[] data) Gets the current contents of the field as a char array.

void setChars (char[] data,
int offset, int)

The first argument is an array of the char type. The second
argument is the starting index in the array from which characters
are to be taken from the array. The third argument is the number of
characters to be taken from the array.

void setString (String) Sets the text to be displayed in a field.

(Continued)

In addition to the properties and methods that are defined in the TextField class

itself, you can make use of properties and methods inherited from the Item class.

Among the properties that are important in this respect are those that you use as

arguments to the setLayout()method. Use of this method is discussed at greater

length in relation to the StringItem class. For information on the Item class and

its layout properties, see the sidebar ‘‘Overview of the Item Class.’’

Playing with Numbers
The FormTextFieldTest class provides a simple calculator that can perform

multiplication and addition. It offers examples of how to use Form, Item, Text-

Field, and StringItem objects to process messages that indicate the type of

operation to be performed and display the result of the calculation. It also

provides examples of the use of casting and the Double class for retrieving values

of the String type from TextField objects and then converting them into float

values so that the calculations can be displayed. To process the messages from a

266 Chapter 10 n Forms and Items

String getString () Gets the current contents of the field as a string.

int getMaxSize() Gets the maximum number of characters allowed in the field.

int setMaxSize(int) Establishes the maximum number of characters allowed in the
field.

int size () Gets the current number of characters in the field.

ANY Allows you to process an alpha or numeric value from a field or to
display such a value to a field.

EMAILADDR Provides a mask for an email address.

NUMERIC Converts the values in the field into an integer value.

PHONENUMBER Provides a mask for a phone number, which consists of a mixture
of characters.

URL Provides a mask that accepts the characters for a URL.

DECIMAL Allows you to process numbers with decimal points.

PASSWORD Masks the characters so that the value typed does not appear
literally.

UNEDITABLE Prevents values from being entered into the field. It also prevents
you from assigning values to the field programmatically.

INITIAL_CAPS_WORD Forces each new word to be capitalized.

INITIAL_CAPS_SENTENCE Forces each new sentence to be capitalized.

Appearance Modes Table 10.3 provides an extended list of the appearance modes that
you can use with all objects derived from the Item class.

Table 10.2 Continued

Method Description

TextField object, the ItemStateListener interface is implemented. The item-

StateChanged() method, which is the sole method provided by the Item-

StateListener interface, allows you to process messages generated by any of the

subclasses of the Item class. The FormTextFieldTest class provides four TextField

objects, all of which are assigned to an array of the Item type. You can find the

FormTextFieldTest class in the Chapter 10 source directory. It is also included in

the Chapter10MIDlets NetBeans project. The code is explicated in the sections

that follow. Here is the code for the class.

/*
* Chapter 10 \ FormTestFieldTest.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
//import java.io.*;
//import java.util.*;

public class FormItemTextFieldTest extends MIDlet
implements CommandListener,

ItemStateListener{
// #1 Declare attibutes
private Form form;
private Display display;
private TextField textFieldA;
private TextField textFieldB;
private TextField textFieldC;
private TextField textFieldD;
private StringItem textFieldE;
// #1.1 create an array of the Item type
final int COUNT = 5;
private Item elements[] = new Item[COUNT];
private String strA, strB;
private String doAction;
private Command quit;

public FormItemTextFieldTest()
{

display = Display.getDisplay(this);
// #2 Construct a Form object
form = new Form("Form and Item Test");

Playing with Numbers 267

// #2.1 Construct and add textfield objects to an Item array
textFieldA = new TextField("Num A:", "", 10, textFieldA.DECIMAL);
textFieldB = new TextField("Num B:", "", 10, TextField.DECIMAL);
textFieldC = new TextField("Operation:", "", 1, TextField.ANY);
textFieldD = new TextField("Sum", "", 10, TextField.DECIMAL);
textFieldE = new StringItem("", "Type num, SELECT Down, num, " +

"SELECT Down, num, " +
"SELECT Down keypad M or A, " +
"and then SELECT Down, keypad 1 " +
"for the Sum field. " +
"Clear clears a field.");

elements[0] = textFieldA;
elements[1] = textFieldB;
elements[2] = textFieldC;
elements[3] = textFieldD;
elements[4] = textFieldE;
// #2.2 Add the Item object to the array
for (int itr = 0; itr<COUNT; itr++){

form.append(elements[itr]);
}

quit = new Command("Quit", Command.EXIT, 2);
form.addCommand(quit);
form.setCommandListener(this);

// #2.3 Add a listener for the Item objects
form.setItemStateListener(this);

}

protected void startApp() throws MIDletStateChangeException{
display.setCurrent(form);

}

protected void pauseApp(){
}

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}

268 Chapter 10 n Forms and Items

// #3 Handle events for the Item objects
public void itemStateChanged(Item item){

// #3.1 variables of the double type
double dA, dB;
double total;
textFieldD.setString("");
// #3.2 select for the Item objects
if(item = = textFieldA){
System.out.println("State changed for " + item);

// #3.3 Retrieving a field value
textFieldA = (TextField)form.get(0);
strA = textFieldA.getString();

}
if(item = = textFieldB){

System.out.println("State changed for " + item);
textFieldA = (TextField)form.get(1);
strB = textFieldB.getString();

}
if(item = = textFieldC){

textFieldC = (TextField)form.get(2);
doAction = textFieldC.getString();
System.out.println("Action " + doAction);

}
if(item = = textFieldD){

dA = 0;
dB = 0;
total = 0;
// #3.4 Processing Double/double values
textFieldD = (TextField)form.get(3);
dA = Double.valueOf(strA).doubleValue();
dB = Double.valueOf(strB).doubleValue();
System.out.println("D - Action " + doAction);
// #3.5 Select using the retrieved
if(doAction.equalsIgnoreCase("M")){

System.out.println("DM - Action " + doAction);
total = dA * dB;

}
if(doAction.equalsIgnoreCase("A")){

System.out.println("DM - Action " + doAction);
total = dA + dB;

}

Playing with Numbers 269

textFieldD.setString(String.valueOf(total));
}

}// end itemStateChance

public void commandAction(Command command, Displayable displayable)
{

try{
if(command = = quit){

destroyApp(true);
notifyDestroyed();

}
}catch (MIDletStateChangeException me){

System.out.println(me + " caught.");
}

}//end commandAction
}// end class

Construction and Definition

In the FormItemTextFieldTest class, in the lines following comment #1, you

declare attributes of the Form, Display, TextField, StringItem, Item, String, and

Command types. Of these, as Figure 10.1 shows, the TextField and StringItem

attribute types are subtypes of the Item class, so you can store references to these

classes in the elements array, which is defined to contain five references to objects

of the Item subtypes. The Form attribute allows you to add the Item objects to the

MIDlet in a sequential manner, as is shown in Figure 10.2. One Command attribute

is used to close the MIDlet, but you can handle additional actions from objects of

the Item subclasses by making use of the ItemStateListener interface, which you

implement as an interface. To define the number of elements in the elements

array and also to control repetition statements that make use of the elements

array, you declare a final attribute of the int type (COUNT).

In the construction of the class, in the lines following comment #2, you create a

new Form object and assign it to the form attribute. After that, in the lines

associated with comment #2.1, you create five instances of the Item subclasses,

which you assign to the TextField and StringItem attributes. The TextField

constructor requires four arguments. The first argument is a literal string

object of the String type that provides the label of the TextField object. This

value is set with the construction of the TextField object and cannot be changed

afterward.

270 Chapter 10 n Forms and Items

No t e

It is possible to create and assign TextField objects directly to an array of the Item type, but
using the attributes in an intermediary step makes it clearer what is being done. Here is an
example showing how you can directly create an instance of one of the Item subclasses and
assign it to an array of the Item type:

elements[0] = new TextField("Num A:", "",

10, textFieldA.DECIMAL);

Using this approach, you can eliminate the redundant use of the class attributes.

The second argument of the TextField constructor provides the default value to

be displayed by the TextField object in its active field. For all of the TextField

objects in the current class, this argument is an empty string. As Table 10.1

reveals, you can use such methods as insert(), setChars(), setString(), and

delete() to change the value of the active field.

The third argument for the TextField constructor is of the int type. It establishes

the number of characters the TextField object accepts in its display field. In this

instance, with the exception of the ‘‘Operation’’ field, which is set to 1, all the

TextField objects are defined with active fields that can accept 10 characters.

The last argument of the TextField constructor is of the int type. The acceptable

arguments are defined as properties of the TextField class. The properties used

are DECIMAL and ANY. The first of these automatically displays and accepts rational

values. The second allows for both numerical and alphabetical input.

For the StringItem constructor, two arguments are required. The first is the label

of the StringItem object. The label of a StringItem object behaves in largely the

same way as the label of a TextField object. The difference is that the active field

of the StringItem object is not by default active and is not surrounded with a

bordered box. The methods that apply to it are also different than those you use

with objects of the TextField class.

No t e

The StringItem class is covered in greater detail in a subsequent section of this chapter. In this
context, it is important only to recognize that it is a subclass of Item and so can be used in ways
similar to other Item objects. Its construction and methods differ from those of the TextField class.

To add the Item subclass object to the Form object, you use the append() method

of the Form class. To accomplish this, as is evident in the lines following comment

#2.2, you use a for repetition statement to add the Item objects to the elements

Playing with Numbers 271

array. The repetition iterates five times, associating the Form object with four

TextField references and one StringItem reference. Figure 10.2 provides a view

of the display that results.

Processing Events

In the FormItemTextFieldTest class, having populated the Form object with refer-

ences to objects of the Item subclasses, you then add the quit command to the Form

object. To accomplish this, you call the addCommand() and setCommandListener()

methods. These two methods pertain to messages relating to the Form object. For

the Item objects, you require a second type of message processing.

In the signature line of the FormItemTextFieldTest class, you use the implements

keyword to implement both the CommandListener interface, which allows you

to process Formmessages, and the ItemStateListener interface, which allows you

to process messages relating to the subclasses of the Item subclasses class. As is

shown in the lines following comment #2.3, you call the Form::setItem-

StateListener() method to set up processing for Item messages.

272 Chapter 10 n Forms and Items

Figure 10.2
The objects derived from the Item class appear in sequence after being added to the Form object.

Playing with Numbers 273

To handle the messages from the Item objects, you implement the itemState-

Changed() method, which is provided by the ItemStateListener interface. As is

evident in the lines associated with comment #3, this method takes an argument

of the Item type. To process an argument from one of the Item objects, you

can use any number of approaches. In this case, a series of if selection statements

is used. In each case, the approach is the same. You test the Item argument for

the identity of the object that issues the message. For example, the first

selection statement tests for the textFieldA object. (You might also test using

elements[0].)

If the selection statement renders true for textFieldA, the flow of the program

enters the first selection block. The first statement in this block, preceding

comment #3.3, issues a test message to the console. After that, following com-

ment #3.3, you cast the value returned by the Form::get()method to retrieve the

TextField reference. The get() method takes an argument of the int type. The

argument designates the index of the Item subclass object you have assigned to

the Form object. The index values corresponding to the Item subclass objects are

determined by the order in which you assign the objects. For this reason, the

textFieldA object corresponds to an index value of 0. The textFieldB object

corresponds to an index value of 1.

When you use the get()method to retrieve an Index object, it is necessary to cast

the object into its proper type. In this case, you cast textFieldA as a TextField

object, so the argument for the cast is TextField. You then assign the object back

to its proper identifier (textFieldA). Having done this, you are in a position to

call any of the methods of the TextField class.

For the textFieldA object, you call the TextField::getString() object, which

returns a reference of the String type. The value returned is the value currently

residing in the active field of the textFieldA object. You assign the returned value

to a local identifier of the String type (strA).

The textFieldA object returns a string that resembles a rational value. It does so

because you have constructed the textFieldA object using the DECIMAL property.

The same approach is used to retrieve the active field value for the textFieldB

object. As Figure 10.3 illustrates, the objective in both cases is to retrieve strings

representing numerical values from the active fields of the two objects so that you

can perform calculations using them.

With the textFieldC object, you identify the calculation to be performed. For

this application, only two calculations apply, multiplication and addition. The

statements in the if selection block follow the same pattern as those previously

implemented, but in this case, you assign the returned value of the getString()

method to an identifier of the String type (doAction). The value that you assign is

a letter (A or M). This is possible because you have used the ANY property to define

the textFieldC object. This property forces the value you enter into the field

using the keyboard to be converted into an alphabetical value.

For the final selection statement, you test for the textFieldD object. When a

message is received from this object, first you initialize the local identifiers, dA, dB,

and total, to 0. After casting the textFieldD object back to itself, you then revisit

the String values stored in the strA and strB identifiers, which you have defined

using the values retrieved from the textFieldA and textFieldB objects. These

values must be converted to the double type to be processed arithmetically, and to

accomplish this, you use the Double::valueOf() method to first convert the

String values to values of the abstract Double type. You then call the String:

:doubleValue() method to convert these values to the primitive double type.

274 Chapter 10 n Forms and Items

Figure 10.3
Use the ItemStateListener interface to process messages issued by the subclasses of the Item class
assigned to a Form object.

Given the conversion of the String references to primitive double values,

you can carry out the arithmetic necessary to calculate a value for the total

identifier. To accomplish this, as the lines following comment #3.5 show, you test

the value assigned to the doAction identifier. This identifier is of the String type,

and the String::equalsIgnoreCase() method allows you to determine alphabe-

tical equality between String items. If the value is M, then the statement in the

selection block multiplies the value of dA by the value of dB and assigns the result

to total. If the value is A, then the one value is added to the other and assigned to

total.

To display the value assigned to the total identifier, the String::valueOf()

method is called. This method is overloaded so that it can accept arguments of

any of the primitive types, so in this case, no problem is created with the use of the

total identifier. The value is converted to the String type, and the TextField:

:setString() method is then called to populate the active field of the textFieldD

object with the result of the calculation. As Figure 10.3 illustrates, after you move

the cursor to the Sum field, you can click any of the keyboard keys to invoke the

textFieldD selection statement and see the calculated results.

StringItem
As shown previously in this chapter, the StringItem class provides objects that

display text messages. Since it is a subclass of the Item class, you use the append()

method to associate it with a Form object. As with the TextField class, the

StringItem class inherits several methods from the Item class. In addition to the

inherited properties you can use to set its mode of appearance there are also

those that you use in relation to the setLayout() method. Table 10.3 provides a

partial list of the defined values for the mode of appearance. See the sidebar,

‘‘Overview of the Item Class,’’ for information on the layout properties. They can

all be used as arguments in one of the StringItem constructors. They allow you to

control such things as where the StringItem object appears in the display,

whether a new line character follows it, and whether it appears as a hyperlink.

The StringItem class is derived from the Item class, and for this reason, several of

the methods that you regularly use with it are covered only in the documentation

of the Item class. Since the Item class is abstract, you can use it, for example, as

a type for an array or a collection, but you cannot directly instantiate instances

of it.

StringItem 275

The ItemPlayTest Class
The ItemPlayTest class reviews some of the methods you use in association with

the StringItem class. Some of these are derived from the Item class. The

StringItem class works largely the same way as the other classes derived from the

Item class, with the difference that the text area or field associated with it cannot

be changed through direct interaction. To alter the text you associate with a

StringItem object, you have a number of options, however. Among other things,

you can use the notifyStateChanged() method. The StringItem class inherits

the method from the Item class. Since the notifyStateChanged() method gen-

erates an event, you can use the event in conjunction with the setText() method

276 Chapter 10 n Forms and Items

Table 10.3 StringItem

Method Description

StringItem(String, String) Creates a new StringItem object. The first argument sets the
value for the label. The second argument sets the value for the
text area. Use an argument of null to exclude the label or text
area from construction.

StringItem(String, String, int) This constructor is the same as the first with respect to the first
two arguments. For the third argument, you use an appearance
mode property. A list of these appears later in this table.

String getText() Returns a reference to a String object with the characters in
the text area. It returns null if you have not assigned a value
to the text area.

void setFont(int, int, int) Allows you to set the font for the text area. The arguments for
method are all integer values defined in the Font class that
designate the face, style, and size of the Font object.

void setPreferredSize(int, int) The first argument sets the width. The second argument sets
the height.

void setText(String) Allows you to assign characters in the form of a String object
or reference to the text area. You can also use a literal string
value.

Appearance Modes Inherited from the Item class. A few examples are BUTTON,
HYPERLINK, LAYOUT_BOTTOM, LAYOUT_CENTER, LAYOUT_
DEFAULT, LAYOUT_LEFT, LAYOUT_NEWLINE_AFTER, LAYOUT_
TOP, and LAYOUT_VSHRINK, PLAIN. See Table 10.4 for further
discussion of these values.

Item::setLayout() This method is a member of the Item class. You use such values
as LAYOUT_LEFT, LAYOUT_RIGHT, and LAYOUT_CENTER, and
Or them with DEFAULT_LAYOUT to position StringItem
objects in the display area.

of the StringItem class to dynamically change the text associated with a

StringItem object.

Like the other demonstration classes in this chapter, the ItemPlayTest class is in

theChapter 10 source directory. You can also find it in theNetBeans Chapter10MIDlets

project. The class allows the user to repeatedly press one of the soft buttons to

generate random values that are assigned to the names of cities. The user gets a

limited number of tries with each round of play. Numbers are randomly assigned

to the cities, and the highest number designates the ‘‘winning’’ city. The MIDlet

might be the beginning of a game involving finding a destination for a vacation.

/*
* Chapter 10\ItemPlayTest.java

*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*;

public class ItemPlayTest extends MIDlet implements CommandListener,
ItemStateListener{

// #1
private Form form;
private Display display;
private StringItem strItemA, strItemB, strItemC,

strItemD, strItemE, strItemF;
private final int CITY_LIMIT = 6;
private final int NUMOFTRIES = 9;
private Item elements[] = new StringItem[CITY_LIMIT];
private TextField textFieldA;
private Command quit, tryACity;
private Random random;
private int randInt;
private int highScore;

public ItemPlayTest()
{

random = new Random();
display = Display.getDisplay(this);
highScore = 1;
form = new Form("Find your next destination!!!");

The ItemPlayTest Class 277

// #2 Construct and add textfield objects to an Item array
strItemA = new StringItem("1. San Francisco", "California", Item.BUTTON);
strItemB = new StringItem("2. Manhattan", "New York", Item.BUTTON);
strItemC = new StringItem("3. London", "England", Item.BUTTON);
strItemD = new StringItem("4. Paris", "France");
strItemD.setLayout(Item.BUTTON);
strItemE = new StringItem("5. Tokyo", "Japan", Item.BUTTON);
strItemF = new StringItem("6. Sidney", "Australia", Item.BUTTON);

textFieldA = new TextField("Try: ", "", 12, TextField.ANY);

elements[0] = strItemA;
elements[1] = strItemB;
elements[2] = strItemC;
elements[3] = strItemD;
elements[4] = strItemE;
elements[5] = strItemF;

// #3 Set set the items left, right, and center
elements[0].setLayout(Item.LAYOUT_LEFT | Item.LAYOUT_DEFAULT);
elements[1].setLayout(Item.LAYOUT_RIGHT | Item.LAYOUT_DEFAULT);
elements[2].setLayout(Item.LAYOUT_LEFT |Item.LAYOUT_DEFAULT);
elements[3].setLayout(Item.LAYOUT_RIGHT |Item.LAYOUT_DEFAULT);
elements[4].setLayout(Item.LAYOUT_LEFT |Item.LAYOUT_DEFAULT);
elements[5].setLayout(Item.LAYOUT_RIGHT |Item.LAYOUT_DEFAULT);
textFieldA.setLayout(Item.LAYOUT_CENTER |Item.LAYOUT_DEFAULT);

for (int itr = 0; itr<CITY_LIMIT; itr+ +){
// # 3.1
StringItem tempItem = (StringItem)elements[itr];
tempItem.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.STYLE_ITALIC |
Font.STYLE_BOLD,
Font.SIZE_LARGE));

form.append(elements[itr]);
}
form.append(textFieldA);
form.append(new Spacer(50, 10));

// #3.2
String introStr =

new String("\n When the Backlight flashes\n " +
"The highest score wins");

278 Chapter 10 n Forms and Items

form.append(introStr);
form.append("\nYou have ten tries.");

// #3.3
int numOfItems = form.size();
StringItem tempItem = (StringItem)form.get(numOfItems-1);
tempItem.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.SIZE_MEDIUM |
Font.STYLE_BOLD,
Font.SIZE_LARGE));

// #4
tryACity = new Command("Try", Command.OK, 2);
quit = new Command("Quit", Command.EXIT, 2);
form.addCommand(quit);
form.addCommand(tryACity);
form.setCommandListener(this);
form.setItemStateListener(this);

}

// #5
public void commandAction(Command command, Displayable displayable){

try{
if (command == quit){

destroyApp(true);
notifyDestroyed();

}
// #5.1
if (command = = tryACity){

randInt = random.nextInt(CITY_LIMIT);

if(highScore > NUMOFTRIES){
display.flashBacklight(3000);
highScore = 0;
return;

}
highScore++;
// #5.2
form.get(randInt).notifyStateChanged();

}
}catch (Exception me){

System.out.println(me + " caught.");
}

}//end commandAction

The ItemPlayTest Class 279

// #6
public void itemStateChanged(Item item){

System.out.println("State changed for " + randInt);
StringItem tempStItem;
tempStItem = (StringItem)form.get(randInt);
// #6.1
textFieldA.setString(tempStItem.getText());
tempStItem.setText("Score:" + highScore);

}

protected void startApp() throws MIDletStateChangeException{
display.setCurrent(form);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

}// end class

No t e

When you operate the application for testing, use the F1 and F2 keys on your keyboard to invoke
the actions of the left and right soft keys on the Java Wireless Toolkit device emulator.

Definition and Construction

In the lines preceding comment #1 of the ItemPlayTest class, you define the

ItemPlayTest class so that it implements theCommandListener andItemStateListener

interfaces. The CommandListener interface obligates you to implement the command-

Action()method, while the ItemStateListener brings with it the need to implement

the itemStateChanged() method. In lines immediately following comment #1, you

declare Form and Display class attributes, and following that, you add six StringItem

class attributes. In the next few lines, you attend to defining the elements array. In

this case, the array constructor for the array, StringItem[CITY_LIMIT], uses the

StringItem type, but you can assign the constructed instance of the array to an

identifier of the Item type.This is an irregular approach to constructing anarray, but it

serves to emphasize that the StringItem class is derived from the Item class. As an

experiment, you can change the definition so that it reads as follows:

private Item elements[] = new Item[CITY_LIMIT];

280 Chapter 10 n Forms and Items

You might also use this approach, which makes some of the code in the class

definition redundant:

private StringItem elements[] = new StringItem[CITY_LIMIT];

In addition to defining class attributes of the StringItem and Item types, you also

declare a class attribute of the Random type (random). To access the Random type,

import the java.util package, as is accomplished with the import statements

preceding comment #1. Along with the class attribute of the Random type, you

declare a class attribute of the int type to store random values used in different

methods of the class.

Preceding comment #2, you create an instance of the Random class and assign it to

the random class attribute. Constructing the Random object in the constructor of the

MIDlet allows you to generate different starting values with each new instance of

the MIDlet. Although you can provide a seed value to the Random constructor, in

this case the default version of the constructor is used. This ensures that you see a

different sequence of values with each execution of the MIDlet.

In the lines trailing comment #2, a somewhat redundant approach to constructing

StringItem objects is used. You see both of the overloaded constructors for the

StringItem class in use. Most of the construction statements involve the three-

argument constructor. The first argument for this constructor is of the String type

and provides the label of the StringItem object. The second argument is also of the

String type. It provides the text to be written to the text field of the StringItem

object. The third argument is of the int type and is populated using one of the

defined values provided by the Item class. Generally, this third argument designates

what is known as the appearance mode of the object it defines. The appearance

mode extends to cover the position of the object in the display and the appearance

of the font. Here is an example of the use of the three-argument constructors:

strItemA = new StringItem("1. San Francisco",
"California", Item.BUTTON);

The instance the StringItem class is assigned to one of the class attributes, and a

few lines later, this attribute is assigned to the elements array, which is of Item type.

elements[0] = strItemA;

The instances the StringItem class might be assigned directly to the elements

array, but using an extra step involving named class attributes makes the defi-

nition activities more visible.

The ItemPlayTest Class 281

282 Chapter 10 n Forms and Items

The three-argument StringItem constructor is used for all but one of the con-

struction statements. The one exception occurs with the strItemD attribute. Here

the two-argument constructor is used. With the constructor, the first argument is

of the String type and provides the initial wording for the label. The second, also of

the String type, provides the wording for the text field of the StringItem object.

To provide the strItemD attribute with the same definition that the other attri-

butes are given, a call is made to the setLayout() method. Its sole argument is of

the int type and is defined using one or more of the appearance mode properties

supplied by the Item class. In this instance, as in the construction statements of

the other StringItem objects, you see the Item.BUTTON property:

strItemD = new StringItem("4. Paris", "France");
strItemD.setLayout(Item.BUTTON);

Using the Bit OR Operator

In the lines following comment #3 of the ItemPlayTest class, after assigning the

explicitly constructed instances of the StringItem class attributes to the elements

array, you then proceed to call the setLayout()method using the elements array.

The StringItem class is a subclass of the Item class, and you have assigned

attributes of the StringItem type to the Item array. For this reason, in some cases,

it is necessary to down cast the references in the elements array to the StringItem

type before you can call methods exclusive to the StringItem class. No problem

arises from this approach to calling the setLayout() method, because the

setLayout() method is a member of the Item class that is inherited by all its

subclasses, among which is the StringItem class.

Unlike the arguments supplied in the initial construction and definition state-

ments for the StringItem class, in this case, with the calls to setLayout(), you

use the bit OR (|) operation to join the integer values of different properties

supplied by the Item class. For example, in each case, you appropriate the

Item.LAYOUT_DEFAULT property, which defines the StringItem object so that it

accepts the sizing and positioning priorities supplied by the device and also so

that the object is displayed horizontally and relative to the left side, right side, or

center of the display.

You also make use of the Item.LAYOUT_RIGHT, Item.LAYOUT_LEFT, and Item.-

LAYOUT_CENTER properties to designate that the StringItem objects are to appear

nestled against the left or right borders of the display area or centered on given

lines.

No t e

You can leave out the LAYOUT_DEFAULT property argument for the setLayout() method
(Item.LAYOUT_RIGHT, instead of Item.LAYOUT_RIGHT | Item.LAYOUT_ DEFAULT), but when you
do so, you allow the MIDP class itself to use a default layout.

Font Definitions, Literal Strings, and Appending

The Font class provides an extensive set of options for changing the face, size, and

other features of the characters that appear in the display area of the MIDlet. As a

way of exploring how to set Font values, in the lines associated with comment

#3.1 of the ItemPlayTest class, you employ a for repetition statement to iterate

through the StringItem references assigned to the elements array. With each

repetition of the for block, these lines are invoked:

// # 3.1
StringItem tempItem = (StringItem)elements[itr];
tempItem.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.STYLE_ITALIC |
Font.STYLE_BOLD,
Font.SIZE_LARGE));

The first line downcasts the references from the elements array and assigns them,

using a cast, to a temporary StringItem object, tempItem. Such an action is

necessary because in the next line a call is made to the StringItem::setFont()

method, which is defined in the StringItem class and so cannot be called with a

reference stored in an array of the Item class, which as a superclass does not

support the specialized methods of classes derived from it.

As for the setFont()method itself, you call it using the StringItem object and then

supply as an argument to it a reference of the Font type. The Font class provides the

getFont()method, which is static and serves in place of a constructor to allow you

to create instances of the Font class for use with the setFont() and other methods.

The getFont() method requires three arguments, each taken from a list of defined

properties provided by the Font class. In this instance, the FACE_PROPORTIONAL,

STYLE_ITALIC, STYLE_BOLD, and SIZE_LARGE properties are used. You use the bit OR

(|) operator to set both the italic and bold properties of the font. Figure 10.4

shows the difference changing the face, type, and size properties can make. The

names of the states represent the newly defined font.

Having defined the StringItem objects to include distinct font characteristics,

you then call the Form::append() method to add the StringItem references from

The ItemPlayTest Class 283

the elements array to the Form object. One of the overloaded versions of the

append()method takes as an argument a reference to the general Item class. As an

extension of this activity, in the lines preceding comment #3.2, you employ the

append() method to add a reference to a TextField object to the Form object.

Likewise, in the lines following comment #3.2, you make use of a second

overloaded version of the append() method. This version accepts a reference to a

String object as an argument.

In addition to using the append() method to add String and StringItem objects

to the Form object, you can also use it to directly append literal strings. In the line

directly preceding comment #3.3, you use this approach to add the string ‘‘You

have ten tries’’ to the display. This is the same thing you add to the Form object.

When the string is added to the Form object, it is implicitly stored as an Item

object. That being the case, you can then retrieve it from the Form object, cast it as

needed, and use the setFont() method to format it for display. How this is

accomplished is evident in the lines following comment #3.3. For convenience,

here is the code.

284 Chapter 10 n Forms and Items

Figure 10.4
The setFont() method allows you to alter the size, style, and face of the font.

// #3.3
int numOfItems = form.size();
StringItem tempItem = (StringItem)form.get(numOfItems-1);
tempItem.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.STYLE_ITALIC |
Font.STYLE_BOLD,
Font.SIZE_LARGE));

The Form::size()method returns an integer value that gives the total number of

Item objects you have added to the Form object. To discover the index value of the

final element in the array, it is necessary to subtract 1 from the total number. To

reduce the complexity of the code, the retrieved reference is cast to a StringItem

object and then assigned to the tempItem identifier. On the next line, this iden-

tifier is then used to call the setFont() method of the StringItem class, and the

same values used before are applied to the final lines of the display. Figure 10.4

illustrates the differences in the font faces, sizes, and styles achieved through the

use of the setFont() method.

Spacers and Implicit Appending

Among the classes shown in Figure 10.1 that are derived from the Item class is the

Spacer class. The Spacer class provides a constructor that allows you to create a

rectangular space that is defined by pixel values. As arguments, the Spacer

constructor accepts two positive integer values. The first argument designates

the minimum width of the Spacer rectangle. The second argument designates the

minimum height of the spacer rectangle. In the lines just prior to #3.2 in the

ItemPlayTest class, you see the following activity:

form.append(new Spacer(50, 10));

In this instance, the spacer constructor is used to create an anonymous refer-

ence to a Spacer object 50 pixels wide and 10 pixels high. The size of the

rectangle can expand from the values you set to accord with resizing events in

the display area. As shown in Figure 10.5, the inclusion of the Spacer object

forces the text in the bottom of the display downward from the TextField

object identified with the Try label. The box with the dashed border that

appears in Figure 10.5 does not represent the Spacer as it actually appears. It is

intended only to show you that a spacer is essentially a rectangular space that

you can insert into your display.

The ItemPlayTest Class 285

No t e

Although it is beyond the scope of the discussion in this chapter, you can add commands to
dynamically resize Spacer objects using such Spacer methods as addCommand() and
setMinimumSize(). For comprehensive discussion of all aspects of the MIDP classes, access
http://java.sun.com/javame/reference/apis/jsr118/.

Working with Events

In the lines following comment #4 of the ItemPlayTest class, you define objects of

the Command type. One is specified using the Command.OK field value and labeled

with ‘‘Try’’. This is the tryACity attribute. The other is specified using the

Command.EXIT field value and labeled with ‘‘Quit’’. This is the quit attribute. You

then call the Form::setCommand() method to associate the two Command attributes

to the Form object. Following that, you call the setCommandListener() and

setItemStateListener() methods, both of which use the this keyword as their

arguments, to initialize the Form object so that it can handle events.

286 Chapter 10 n Forms and Items

Figure 10.5
Use Spacer objects to adjust the positions of the display.

http://java.sun.com/javame/reference/apis/jsr118/

As mentioned earlier in this chapter, the setItemStateListener() allows you to

handle events associated with the Item references you have added to the Form

object. Events affiliated with Item objects are handled by the itemStateChanged()

method, which you define when you implement the ItemStateChanged interface.

To handle other events, you implement the commandAction() method, which is

provided by the CommandListener interface.

The primary events of the ItemPlayTest class are generated by the quit and

tryACity commands, both of which are controlled with the soft buttons. The Try

button issues the tryACity event, which is caught by the commandAction() method

and then processed in the if selection block associated with comment #5.1. When

the user activates the Try button, the flow of the program enters the selection block

and a random number in the range from 0 to 5 is generated. This number is then

assigned to the randInt class attribute. Following the generation of a random

number, you then increment the value of a second class attribute, highScore.

Assigned to the randInt class attribute, the randomly generated value is used in

the itemStateChanged() method to allow you to select Item objects randomly

from the Form object. This is possible because each Item object is associated with

an index, and in this case, the indexes 0 through 5 correspond to the names of six

cities around the world, all of which are named in the labels of StringItem

objects. To complement the names of the cities, the text field of each StringItem

object is initialized with the name of the country or state in which the city is

located.

When the user generates a Try event, the current value of highScore replaces the

name of one of the countries that is identified by the random number. To assign

the value, in the lines following comment #6.1, you use the rendInt attribute as

an argument to the Form::get() method to retrieve one of the StringItem

references from the Form object. After casting the reference as a StringItem object

and assigning it to the tempItem identifier, you then use the reference to call the

setText() method, which allows you to assign the value of highScore to the text

field of the StringItem object. Just prior to assigning the highScore value to the

StringItem text field, you call the setString() method of the TextArea object

(textFieldA) to display either the name of the country identified by the random

number or, if the country has already been identified, a newly assigned value.

As Figure 10.6 illustrates, the game of generating random numbers and identi-

fying a single city as the highest scoring city is limited to 10 try actions. An if

selection statement tests the value assigned to the highScore attribute against

The ItemPlayTest Class 287

NUMOFTRIES. When the value of highScore equals NUMOFTRIES, then the keyboard

flashes and highScore is reset to 0.

Ove r v i ew o f t h e I t em C l a s s

The Item class is an abstract class that contains several properties you use as you work with
objects of the StringItem, TextField, DateField, and other classes that are derived from it.
Table 10.4 provides a summary view of some of the properties and methods provided by the Item

class. For a comprehensive discussion of the Item class, see the MIDP site at http://java.sun
.com/javame/reference/apis/jsr118/.

288 Chapter 10 n Forms and Items

Figure 10.6
The notifyStateChanged() method invokes the itemStateChanged() method.

Table 10.4 Selected Item Methods and Modes

Class Method or Property Description

void addCommand(Command) Adds a context-sensitive Command to the Item object.

String getLabel() Returns a String reference with the text of the Item object.

int getLayout() Returns the value or values you have used to position the
Item object in the display.

int getMinimumHeight() If you have assigned a minimum height to the Item object,
then this method returns the integer value you have used to
designate the minimum height.

http://java.sun.com/javame/reference/apis/jsr118/
http://java.sun.com/javame/reference/apis/jsr118/

The ItemPlayTest Class 289

Table 10.4 Continued

Class Method or Property Description

int getMinimumWidth() If you have assigned a minimum width to the Item object,
then this method returns the integer value you have used to
designate the minimum width.

void notifyStateChanged() Induces the Form object that contains an Item object to issue
a message that can be handled by the ItemStateLis-
tener() method.

void removeCommand(Command) Removes the context-sensitive command from Item object.

void setDefaultCommand-
(Command)

Sets the default Command for this Item object.

void setLabel(String) Allows you to assign text to the label of the Item object.

void setLayout(int) Allows you to associate layout directives for this Item object.
You often use several values joined using the bit or operator.

BUTTON Indicates that the Item object should appear as a bordered
box or a button.

HYPERLINK Allows you to designate the Item object as a hyperlink.

LAYOUT_CENTER Causes the Item object to appear in the center, horizontally,
of the display and to be positioned vertically according to the
position you have assigned it in the Form object.

LAYOUT_DEFAULT You can use the bit or operator to join this value with such
values as LAYOUT_CENTER. This ensures that the default
layout policy of the form (or container) applies when the Item
object is positioned for display.

LAYOUT_EXPAND Causes a given Item object to expand until it fills the space
available.

LAYOUT_LEFT Causes the Item object to appear in the left of the display,
positioned vertically according to the place you have assigned
it in the Form object.

LAYOUT_NEWLINE_AFTER If you assign several Item objects to a row, you can use this
to force a line return. The Item object that follows then
appears on the next row.

LAYOUT_NEWLINE_BEFORE Forces the Item object associated with it onto a new line.

LAYOUT_RIGHT Causes the Item object to appear in the right of the display,
positioned vertically according to the place you assigned it in
the Form object.

LAYOUT_SHRINK Grants permission to the display to reduce an Item to the
minimum width you have defined for it.

LAYOUT_TOP Lines up the Item object it is affiliated with at the top of the
display.

LAYOUT_VCENTER Lines up the associated Item object at the vertical center of
the display.

Conclusion
In this chapter, you have explored the Item, Form, TextField, StringItem, and

Spacer classes and have also experimented further with the CommandListener

and ItemStateListener interfaces. In addition, you worked with the Font class

and such methods as getFont() and setFont() of the StringItem class. Since the

TextField and StringItem classes are both derived from the Item class, they share

many common features. On the other hand, the ways that you can use them

differ slightly. The StringItem class offers label and field properties, as does the

TextField class, but processing events with StringItem objects can require a bit

more work than objects in the TextField classes.

Still, as is shown in the ItemPlayTest and FormTextFieldTest classes, the Item

subclasses allow you to work fairly readily with events to pass text information

between objects. In some cases, casting proves essential in this regard. Having

recast references after retrieving them from an array, you can then use the

restored object to call the methods specific to the subclasses. Along the same

lines, while the get() method of the Form class allows you to retrieve subclass

references from Form objects, the append() method enables you to add Item

objects to the Form objects. The append() method proves especially effective

because it is overloaded to allow you to work with different data types as you

assign them to the form object. This extends to such classes as String and Item.

When you assign a literal string to a Form object, you have the option of retrieving

a reference to the string and casting it as a String or StringItem, in which case

you can then apply formatting to it.

290 Chapter 10 n Forms and Items

Images and Choices

In the previous chapter, you worked extensively with the TextField, StringItem,

and Spacer classes, gaining as you went a sense of how to process messages

relating to them after you have placed them in a form. Toward this end, you

examined how to use the ItemCommandListener and ItemStateListener interfaces

to capture and process events. In this chapter, you will continue your exam-

ination of the classes derived from the Item classes. This chapter includes dis-

cussion of the ChoiceGroup and ImageItem classes. Discussion of these two classes

provides an excellent context to begin examining a class that has become

increasingly important as an element in games that involve animations and

graphical components. This is the Image class. The Image class allows you to load

data from files to create stationary and animated items in your MIDlet games.

Figure 11.1 illustrates the hierarchy of classes dealt with in this chapter.

ChoiceGroup
The ChoiceGroup class provides a way to group a list of selections together so that

when you choose one of them, themessage you generate can be retrieved using an

index that identifies the choice within the group of choices. In many ways, the

ChoiceGroup class resembles the List class. As the ComedyChoiceGroup class

illustrates, when you create a ChoiceGroup object, one ready option is to make it

so that you select one item at a time. Clicking one radio button, in other words,

291

deactivates other selections. This list is created using the EXCLUSIVE property,

which is provided by the ChoiceGroup class definition. In addition to single

selections, you can also make multiple selections. To set this option, you define

the ChoiceGroup object using the MULTIPLE property. Table 11.1 provides a

summary of the methods and properties available in the ChoiceGroup class.

The ComedyChoiceGroup Class
You can find the ComedyChoiceGroup class in the Chapter 11 folder in two ver-

sions, one standalone, the other included in the Chapter11MIDlets project folder.

The PNG files used by the class are in the Chapter11MIDlets\src folder.

292 Chapter 11 n Images and Choices

Figure 11.1
The subclasses of the Item class covered in the current chapter are in some respects more complex than
the TextField and StringItem classes.

The ComedyChoiceGroup Class 293

Table 11.1 ChoiceGroup

Method Description

ChoiceGroup(String
label, int)

Constructs a new ChoiceGroup. The constructor takes two arguments.
The first argument is of the String type and collectively identifies
the choices to be included in the group. The second is an integer value
supplied by a defined property of the ChoiceGroup class. This value
establishes, for example, whether the choice group is to allow
multiple choices, single choices, or wrapping lines. (See the descriptions
of the properties further along in this table.)

ChoiceGroup(String, int ,
String[], Image[])

Constructs a ChoiceGroup object. The constructor takes four
arguments. The first argument is of the String type and collectively
identifies the choices to be included in the group. As indicated
previously, the second argument, of the int type, determines whether
the list is to process, for example, single or multiple selections. (See the
list below.) The third argument is an array of the String type that
provides, sequentially, the labels for each of the choices in the group.
The fourth argument, an array of the Image type, provides a set of
images that can be associated (again sequentially) with the choices.

int append(String, Image) This is one of the most frequently used methods. After creating the
ChoiceGroup object, you use this method to append choices to the
object. The index of the choice you append is set according to the order or
sequence in which you append it. The first item appended is assigned to
index 0. The index is incremented with each subsequently appended choice.

void delete(int) Deletes a choice from a group. The sole argument is the index of the
choice to be deleted.

Image getImage(int) Returns the image associated with a choice. The sole argument is the
index of the choice with which the Image object is associated.

int getSelectedFlags-
(boolean[])

Used to process events for choice groups defined using the MULTIPLE
property. It works in a fashion similar to the getSelectedIndex()
methods, with the exception that it populates the boolean array with
the selection values (true or false) corresponding to the selected
choices. The element indexes in the boolean array correspond to the
indexes in the choice group. The value returned provides the number of
items in the choice group.

int getSelectedIndex() This is perhaps the most frequently used method for processing events
from choice groups. It returns the index of the currently selected choice.

String getString (int) Returns the text associated with a choice. The argument, of the int
type, designates the index of the choice in the group.

void insert (int,
String, Image)

Allows you to create and assign a choice to a choice group. Inserts a
choice. The first argument designates the index of the choice to be
created. The second argument provides text to associate with the
choice. The final argument provides an Image object you can associate
with the choice in addition to or instead of the text.

boolean isSelected (int) Returns a boolean value of true if the choice has been selected.
Otherwise, it returns a boolean value of false.

(Continued)

In addition to the primary MIDlet class file, you also make use of the Quotes.java

file, which is used in this context in place of a data file or an RMS object. Here, the

information used in the application is accessed using arrays, one for the files used

to create Image objects, the other for the text displayed after the user selects one of

294 Chapter 11 n Images and Choices

void set (int, String,
Image)

Allows you to define or update an existing indexed choice in a group.
The first argument designates the index of the choice to be defined. The
second argument provides text to associate with the choice. The final
argument provides an Image object you can associate with the choice
in addition to or instead of the text.

void setSelectedFlags
(boolean[])

Used to set all values in a choice group. The argument you provide is an
array of boolean values. The first element in the boolean array, index
0, sets the first choice in the choice group, which also has an index
value of 0. Subsequent indexes in the array correspond similarly to
remaining indexes of the choice group. If the array offers too few index
settings, then the choices default to false.

void setSelectedIndex
(int boolean)

Often used to set the default choice in the choice group. The first
argument is of the int type and designates the index of the choice to
be set. The second argument, a boolean value, determines whether
the choice is to be shown as selected or not selected. A boolean value
of true selects the choice.

int public int size () Returns the number of choices.

EXCLUSIVE With this property, the ChoiceGroup object provides a selection from
which the user can choose only one at a time.

MULTIPLE Inherited from the Choice class. This property allows the user to
choose more than one option at a time.

POPUP Inherited from the Choice class. This property resembles the
EXCLUSIVE property, with the difference that unless the user clicks
or in some other way activates the choice list, only the currently
selected option is visible.

TEXT_WRAP_OFF Inherited from the Choice class. This property forces the text
associated with the choices in the group to be limited to one line
each. Text longer than a line is truncated.

TEXT_WRAP_ON Inherited from the Choice class. This property allows the text that is
associated with a choice to continue over multiple lines.

Item Methods and Commands Note that you often use methods and properties of the Item class with
ChoiceGroup objects. Among the properties are LAYOUT_LEFT,
LAYOUT_NEWLINE_AFTER, LAYOUT_NEWLINE_BEFORE, LAYOUT_
RIGHT. These you identify by using the dot operator to statically
associate them with the Item class, for example, Item.LAYOUT_LEFT.
Likewise, property values are often or-ed together.

Table 11.1 Continued

Method Description

the choices offered by the ChoiceGroup object. The use of Image objects is covered

more extensively later on in this chapter. For now, it is important to note only

that the static Image::createImage() method is repeatedly used to populate the

comedianImage array, which is of the Image type. Figure 11.2 illustrates the rela-

tionships between the Image, Quotes, and ChoiceGroup classes as developed for

this example.

The Quotes class provides sets of quotes for a group of four comedians named in

a choice group. When the user selects a given comedian from the choice group,

the display is refreshed, and a quote from the comedian’s repertoire is displayed.

Figure 11.3 illustrates a user session with the ComedyChoiceGroup MIDlet. The

Image objects displayed in the menu are in this case indistinct. In an exercise

presented later in this chapter (see the section ‘‘The ImageItemFindClass’’), larger

images of the comedians are presented.

Here is the code for the ComedyChoiceGroup class. Specific discussion of the code

follows. Subsequent sections of this chapter discuss the Quotes and Image classes.

/*
* Chapter 11 \ ComedyChoiceGroup.java
*
*/

The ComedyChoiceGroup Class 295

Figure 11.2
The Image, Quotes, and ChoiceGroup classes make it possible to construct and then display messages
for the ComedyChoiceGroup listings.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.IOException;

public class ComedyChoiceGroup extends MIDlet
implements CommandListener{

// #1
private Display display;
private Form form;
private Command exitCmd;
private Command showCmd;
private ChoiceGroup choiceGroupA;
private int indexInGroup;
private int choiceGroupIndex;
private Quotes quotes;
private Image comedianImages[] = new Image[4];

public ComedyChoiceGroup(){

296 Chapter 11 n Images and Choices

Figure 11.3
The ChoiceGroup object provides choices that can be accessed exclusively.

// #2
quotes = new Quotes();
loadImages();
display = Display.getDisplay(this);
form = new Form("");

// #3
choiceGroupA = new ChoiceGroup("Get a Quote", Choice.EXCLUSIVE);
// Append options; the second (null) argument is for an image
choiceGroupA.append("Groucho Marx", comedianImages[0]);
choiceGroupA.append("Phyllis Diller", comedianImages[1]);
// Set the default
indexInGroup = choiceGroupA.append("George Bernard Shaw",

comedianImages[2]);
choiceGroupA.append("Rodney Dangerfield", comedianImages[3]);

// Set the above choice as the initially selected option
choiceGroupA.setSelectedIndex(indexInGroup, true);

// #4
exitCmd = new Command("Exit", Command.EXIT, 1);
showCmd = new Command("Show", Command.SCREEN,2);

choiceGroupIndex = form.append(choiceGroupA);
form.addCommand(exitCmd);
form.addCommand(showCmd);
form.setCommandListener(this);

}

// Called by application manager to start the MIDlet.
public void startApp(){

display.setCurrent(form);
}

public void pauseApp(){ }

public void destroyApp(boolean unconditional){ }

public void commandAction(Command cmd, Displayable dsp){
// #5
if (cmd == showCmd){

// Build a string showing which option was selected
StringItem textOfChoice = new StringItem("You selected: ",

The ComedyChoiceGroup Class 297

choiceGroupA.getString(choiceGroupA.getSelectedIndex()));
System.out.println(choiceGroupA.getSelectedIndex());
String selectedQuote = quotes.getQuote(

choiceGroupA.getSelectedIndex());

// Place the String reference in a StringItem object
StringItem itemForQuote = new StringItem(null, selectedQuote);

// Apply formatting
itemForQuote.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.SIZE_MEDIUM |
Font.STYLE_BOLD,
Font.SIZE_LARGE));

form.append(textOfChoice);
form.append(itemForQuote);
// Update the MIDlet to show the choice
form.delete(choiceGroupIndex);
form.removeCommand(showCmd);

}else if (cmd = = exitCmd){
destroyApp(false);
notifyDestroyed();

}
}// end commandAction

public void loadImages(){
try{

comedianImages[0] = Image.createImage("/groucho.png");
comedianImages[1] = Image.createImage("/phyllis.png");
comedianImages[2] = Image.createImage("/george.png");
comedianImages[3] = Image.createImage("/rodney.png");

}catch(IOException ioe){
ioe.toString();

}//end try block
}//end loadImages

} //end class

Class Definition

In the lines associated with comment #1 in the ComedyChoiceGroup class, you first

declare class attributes of the Display, Form, and Command types. In the signature

line of the class, you implement the CommandListener interface, so the events for

298 Chapter 11 n Images and Choices

the objects in the class are processed through events generated through the Form

object using the commandAction() method, which is provided by the Command-

Listener interface.

To accommodate a group of choices, you declare a ChoiceGroup class attribute

(comedianChoiceGroup). To set the default choice and to process messages from

the choice group, you declare two attributes of the int type, defaultChoice and

choiceGroupIndex. You also declare an object of the Quotes type, which is a class

created to randomly generate quotes attributed to the comedians featured in the

choice group. To make it possible to associate small images with each of the

choices, you create an array of the Image type (comedianImages).

In the lines associated with comment #2, you create an instance of the Quotes

class and assign it to the quotes identifier. You then call the loadImages()method

of the ComedyChoiceGroup class, which is defined in the lines trailing comment #6.

This methodmakes use of the comedianImage array to successively load four small

images of the *.png type. To load images, you call the Image::createImage()

method. Here is an example of one of the construction statements following

comment #6:

comedianImages[0] = Image.createImage("/groucho.png");

The PNG file type is but one of many that the createImage() method can work

with. Among others are the GIF, BMP, and JPEG formats. The createImage()

method is static and audits the file data as it is loaded. To call the createImage()

method, as the lines following comment #6 show, you must use a try. . .catch()

block. The data type used in this context for the catch argument is IOException.

To use this class, you must include the java.io.IOException package at the start

of the program. A compiler error is generated unless potential IO errors gen-

erated by the createImage() method can be handled. In essence, the constructor

for the Image class is wrapped in the createImage() method in a way that throws

an error of several possible types, including IOException, if the construction

statement fails.

Defining the Choice Group Object

Having created the Image objects to be used with the ChoiceGroup elements, in the

lines following comment #3, you call the ChoiceGroup constructor to create a new

instance of the ChoiceGroup class. This you assign to the comedianChoiceGroup

identifier. The constructor for the ChoiceGroup class in this instance requires two

The ComedyChoiceGroup Class 299

arguments. The first is of the String type and sets the title of the ChoiceGroup

object. The second argument is of the int type and makes use of one of the

properties defined in the ChoiceGroup class. As Table 1.1 discusses, the use of the

EXCLUSIVE property designates that the user may choose only one offering at a

time from the group.

Following the construction of the ChoiceGroup object, specific choices can be

assigned to it. Choices consisting of the names of four comedians are furnished

using the append() method. The append() method takes two arguments. Its first

argument is of the String type, providing the text for the choice, and its second is

of the Image type. In most situations, developers do not assign a reference to an

Image to a choice, instead providing null as the second argument. Here is how such

a statement might appear if the picture of Phyllis Diller were left out of the display:

comedianChoiceGroup.append("Phyllis Diller", null);

As it is, all of the calls to the append() method do associate images with the

comedians. This call sets up a choice for Phyllis Diller:

comedianChoiceGroup.append("Phyllis Diller", comedianImages[1]);

The Image references are extracted from the comedianImages array, the indexes of

the array identifying successive objects of the Image type that have been assigned

to the array.

No t e

The size of Image objects the ChoiceGroup can accommodate should generally be around
10 pixels in width and height in a standard display list if you do not alter the default font or layout
settings. Figure 11.3 provides an example of what you get with the default settings.

In addition to setting up the choices for the group, you can also set a specific

choice as the default. If not defined, the default choice is the first choice in the list.

To set a different choice, further use of the append() method can be made. The

append() method returns the index value of each new item you assign to a group

using it, so in the lines following #3, you see this statement:

defaultChoice = comedianChoiceGroup.append(
"George B. Shaw", comedianImages[2]);

This call to the append() method returns the index value associated with the

choice for G. B. Shaw, which is assigned to the defaultChoice identifier. A few

lines later, the setSelectedIndex() method is called to establish the Shaw choice

300 Chapter 11 n Images and Choices

as the default. You use the value assigned to defaultChoice as the first argument

to the method. The second argument, of the boolean type, is used to associate a

value of true with the selection:

comedianChoiceGroup.setSelectedIndex(defaultChoice, true);

If you set the selected index to true, then the button for the choice is activated, as

shown in Figure 11.3, and in a choice group defined using the EXCLUSIVE

property, the choice you have defined in this way becomes the default choice.

Were you to set the value to false, then the ChoiceGroup object would seek any

other choice that might be set to true. Finding none, it sets the first choice in the

group as the default choice.

Having fully defined the ChoiceGroup object so that each of the choices it

represents contains both a text providing the name of a comedian and a small

image of the comedian, and also having set G. B. Shaw as the default choice,

you now proceed, in the line immediately preceding comment #4, to call the

Form::append() method to add the entire choice group to the Form object of the

MIDlet. The argument to the method is the comedianChoiceGroup identifier.

Processing Messages

As is shown in the lines following comment #4 of the ComedyChoiceGroup class,

the Command constructor is invoked twice to create instances of the Command class

to assign to the exitCmd and showCmd attributes. The addCommand()method is then

used to add references to these commands to the form. In addition, the set-

CommandListener() method is called, establishing general message processing

capabilities for the MIDlet’s form attribute.

Processing messages for the ComedyChoiceGroup class takes place within the scope

of the commandAction(), which is defined in the lines associated with comment #5.

In this context, as is evident in the lines immediately following comment #5, you

make extensive use of the comedianChoiceGroup object to call two ChoiceGroup

methods, getString() and getSelectedIndex(). The getSelectedIndex()

method processes the message issued by the Form object to determine the index of

the choice in ChoiceGroup that is selected when the showCmd event is triggered. The

getSelected() method returns the integer index value of the selection. Since the

getString() method takes as its argument an int value designating a choice in

the ChoiceGroup object, you have a way to readily retrieve the text that identifies

the selected choice.

The ComedyChoiceGroup Class 301

The getString() method returns a value of the String type. This value is used to

create a StringItem object (nameOfChoice) that you use to display the name of the

selected comedian. The String argument is the second argument of the con-

structor for the StringItem class. The first argument is also of the String type,

and in this case you provide a literal string, ‘‘You selected:’’.

In addition to using it to retrieve the text that identifies the selected comedian,

you call the getSelectedIndex() method to supply an argument to the Quo-

tes::getQuote()method. This method takes as an argument an index identifying

the comedian for whom a quote is needed. As set up in this system of classes, the

indexes of the comedians as defined in the ChoiceGroup object correspond to the

indexes that define the comedians in the Quotes class.

No t e

The ComedyChoiceGroup and Quotes classes are closely coupled, so it is necessary to inspect
both classes to know the index values corresponding to the comedian names as identified in the
ChoiceGroup object and the names of the comedians as identified in the Quotes class. The
indexes are the same in both places, of course, but it is clear that the situation provides
opportunities for revision, possibly with a lookup using a RMS container.

Formatting the Font and Displaying the Results

As the lines following comment #5.1 reveal, the randomly selected quote from

the Quotes class that is assigned to the String object (retrievedQuote) can be

used to create a second StringItem object, quoteForDisplay. The StringItem

object makes it possible for you to use the setFont() method of the StringItem

class to format the font of the message, making it large enough to be easily read,

as shown in Figure 11.4.

The setFont() method takes as its argument a reference to a Font object, and to

supply such an object, you call the static Font::getFont() method. In this case,

the arguments used to define the Font object are the same as those used in

Chapter 10. The values used relate to the face, size, and style of the font, and the

font that results is larger and darker than the default.

Having formatted the font, it then becomes possible to once again call the

append() method of the Form class to append the two StringItem objects

(nameOfChoice and quoteForDisplay) to the form identifier. Following this, you

then call the Form::delete() method to remove the selected index. You also call

the Form::removeCommand() method to remove the showCmd from the Form object.

302 Chapter 11 n Images and Choices

These methods clear the MIDlet after you perform a selection, allowing you to

return to the starter menu when you are done viewing the displayed joke.

The Quotes Class

As Figure 11.5 shows, the Quotes class is used on a composition basis with the

ComedyChoiceGroup class to provide randomly selected quotes for a specific set

of comedians that includes Rodney Dangerfield, Groucho Marx, Phyllis Diller,

and G. B. Shaw. The approach used for supplying the quotes involves retriev-

ing an index value representing a comedian in the ChoiceGroup object in the

ComedyChoiceGroup class and then using it to identify the same comedian in the

Quotes class. In the Quotes class, the quotes are stored in Vector containers. This

class, like the ComedyChoiceGroup class, is provided in standalone and NetBeans

versions in the Chapter 11 source code folder. Much of the code represents items

already covered in previous chapters, but it is included for purposes of review.

Extended discussion follows the presentation of the code.

The ComedyChoiceGroup Class 303

Figure 11.4
Messages are retrieved using the indexes of the ChoiceGroup object.

/*
* Chapter 11 \ Quotes.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*;

public class Quotes {
// #1
private Vector Groucho;
private Vector Phyllis;
private Vector George;
private Vector Rodney;
private final int NUMSPEAKERS = 4;
private int randInt;
private Random random;
// #2
public Quotes(){

random = new Random();
Groucho = new Vector();
Phyllis = new Vector();
George = new Vector();
Rodney = new Vector();
makeQuotes();

}
// #3
private String findQuote(Vector vect){

int ctr;
ctr = random.nextInt(vect.size());
return vect.elementAt(ctr).toString();

}
// #4
public String getQuote(int speaker){

StringBuffer quote = new StringBuffer();
int ctr;
if(speaker > NUMSPEAKERS-1 || speaker < 0){

speaker = 0;
}
switch(speaker){

case 0:
quote.append(findQuote(Groucho));

break;

304 Chapter 11 n Images and Choices

The ComedyChoiceGroup Class 305

case 1:
quote.append(findQuote(Phyllis));

break;
case 2:

quote.append(findQuote(George));
break;
case 3:

quote.append(findQuote(Rodney));
break;

default:
quote.append("Not found");

}//end switch
return quote.toString();

}//end getQuote

// #5
private void makeQuotes(){

Groucho.addElement("Either he’s dead or my watch has stopped.");
Groucho.addElement("And I want to thank you for all the " +

"enjoyment you’ve taken out of it.");
Groucho.addElement("I don’t care to belong to a club that " +

"accepts people like me as members. ");
Groucho.addElement("I must confess, I was born at a very early age.");
Groucho.addElement("I worked my way up from nothing " +

"to a state of extreme poverty. ");
Groucho.addElement("No man goes before his time - " +

"unless the boss leaves early. ");

Phyllis.addElement("A bachelor is a guy who never made " +
"the same mistake once.");

Phyllis.addElement("A smile is a curve that sets " +
"everything straight. ");

Phyllis.addElement("Aim high, and you won’t shoot your foot off. ");
Phyllis.addElement("Any time three New Yorkers get into a cab " +

"without an argument, a bank has just been robbed.");
Phyllis.addElement("Best way to get rid of kitchen odors: Eat out.");
Phyllis.addElement("Cleaning your house while your kids are still "+

"growing is like shoveling the sidewalk before " +
"it stops snowing.");

George.addElement("A government that robs Peter to pay Paul" +
"can always depend on the support of Paul. ");

George.addElement("All great truths begin as blasphemies. ");
George.addElement("Baseball has the great advantage over cricket" +

" of being sooner ended. ");
George.addElement(

"If all the economists in the world were laid end to end, " +
"they wouldn’t reach any conclusion. ");

George.addElement("My reputation grows with every failure. ");
George.addElement("One man that has a mind and knows it can "+

"always beat ten men who haven’t and don’t.");

Rodney.addElement("When I was born I was so ugly the doctor " +
"slapped my mother.");

Rodney.addElement("I could tell that my parents hated me. My bath " +
"toys were a toaster and a radio.");

Rodney.addElement("I get no respect. The way my luck is running, " +
"if I was a politician I would be honest.");

Rodney.addElement("I have good looking kids. Thank goodness " +
"my wife cheats on me.");

Rodney.addElement("I haven’t spoken to my wife in years. " +
"I didn’t want to interrupt her.");

Rodney.addElement("I looked up my family tree and found " +
"out I was the sap.");

}
}

Construction and Definition

In the lines accompanying comment #1 of the Quotes class, four attributes of the

Vector type are declared, each identified by the first name of a comedian. This

informal approach to setting up data retrieval clearly leaves much to be desired in

industrial settings, but for the present purposes, the familiarity of terms makes the

exercise easier to understand. In addition to a set of Vector objects, you also have a

final or constant value, NUMOFSPEAKERS, and an attribute of the Random type. Tomanage

randomly generated values, an attribute of the int type is also defined, randInt.

In the lines in the constructor for the class which follows comment #2, you create

instances of the Random and Vector classes and assign them to the class attribute.

You also call the makeQuotes() method. The makeQuotes() method is defined in

the lines following comment #5, and it consists wholly of repeated calls by the

Vector objects to the addElement()method. This method takes a generic object of

306 Chapter 11 n Images and Choices

any type derived from Object, so in this case, the literal strings provided as

arguments are implicitly converted into generic objects.

No t e

Use of the Vector class differs with recent versions of Java. The Vector class is now defined so
that it uses a template constructor. The constructor allows you to designate the type upon
construction, so casting data as you retrieve it from the Vector is not required. As mentioned in
a previous chapter, the generic collection uses the following type of constructor:

Vector<String> vector = new Vector<String> ();

At comment #2 in the Quotes class, the findQuote() method is defined. This is not

a feature of the public interface of the class. Like the makeQuotes() method, it

provides a service used to retrieve quotes randomly. It takes a reference to a

Vector as its argument and returns a randomly chosen element from the Vector

object. To choose an element, it makes use of the Vector::size() method to

ascertain the number of elements contained by the Vector object. The value

returned by the size() method is of the int type and serves in this respect to set

the range for the Random::nextInt() method, which itself returns a value in the

range extending from 0 up to the maximum given by size(). Since the size of the

Vector is the number of items in the Vector and not the highest index value, it can

serve to establish a range that encompasses all the elements in the Vector, which

like an array are identified with indexes beginning at 0. The randomly generated

values are assigned to the ctr identifier.

As mentioned in the note on the template form of the constructor, the type of

construction statement supported by the MIDP 2.0 for the Vector class stipulates

that when you assign a reference to a Vector object, the Vector object accepts it as a

subclass of the Object class. For this reason, after retrieving the reference from the

Vector object using the elementAt()method (which uses the value assigned to ctr

as an argument), you must use the toString() method to convert the retrieved

value back into a string. This value is then returned by the findQuote() method.

Aside from the constructor, the only public method provided by the Quotes class

is getQuotes(). This method takes an argument of the int type and returns a

value of the String type. In this case, a local identifier of the StringBuffer type is

defined. Definition of the StringBuffer identifier is in part a precautionary

measure. This way, the method always returns a legitimate reference, even if it is

empty. To assign text to the quote identifier, the argument to the method is used

to select one of the speakers. The switch statement provides a case for each of the

The ComedyChoiceGroup Class 307

speakers. As can be determined after a glance at the set of calls to the append()

method used to define the ChoiceGroup object in the ComedyChoiceGroup class, the

numbers evaluated by the case statements to identify the comedians are the same

as the index values for the ChoiceGroup object.

The StringBuffer::append()method allows you to assign a text string of varying

length to the StringBuffer object, which unlike a String object can grow in

length after it has been constructed. Next, the flow of the program passes through

the case statements, locates the appropriate comedian using the index number,

uses the findQuote() method to retrieve a quote from the Vector supplied as an

argument, and then stores the retrieved text in the quote identifier. The

StringBuffer::toString() method can then be used to convert the text to the

String type so that it can be returned by the method.

ImageItem and Image
As Figure 11.5 illustrates, the ImageItem class is associated with the Image class. The

primary purpose of the ImageItem class is to provide you with a convenient way to

format and display Image objects. This relationship is made clear in Table 11.2,

which presents the two overloaded versions of the ImageItem constructor. Both

constructors use arguments of the Image type. Generally, the primary purpose of

the ImageItem class is to facilitate the management of Image objects as you present

them for display. The formatting capabilities they offer in this respect prove

invaluable and provide you with a way to separate the activity of preparing an

image for presentation (an activity that centers on the Image class) and formatting

the prepared image for display in the context provided by a Form object (an activity

that centers on the ImageItem class).

As has been demonstrated in part with the ComedyChoiceGroup class, Image objects

can be used with ChoiceGroup objects. They can also be used with ImageItem

objects and objects generated from such classes as Alert, Choice, and Form. A

closer examination of the Image class is therefore in order. Table 11.3 provides a

summary discussion of some of the features of the Image class.

No t e

With respect to some of the methods and terms used Table 11.3, an Image object is mutable
when its pixels are fully opaque. In practical terms this relates to whether an Image can have a
transparent background. To have a transparent background, an image must be to some extent
immutable. Immutable images can consist of a combination of opaque, transparent, and semi-
transparent pixels.

308 Chapter 11 n Images and Choices

ImageItem and Image 309

Table 11.2 ImageItem Methods and Properties

Method Description

ImageItem(String, Image,
int, String)

Creates a new ImageItem object using four arguments. The first
argument is of the String type and provides a label for the
ImageItem object. This label appears just above the Image object
the ImageItem displays. The second argument is of the Image type
and provides the graphical object the ImageItem object serves to
display. The third argument provides a defined value used to format
the display of the ImageItem. The last argument provides text that
can be displayed in the event that the Image does not.

ImageItem(String, Image,
int, String, int)

This version of the constructor allows you to create an ImageItem
using five arguments. The first provides a label for the ImageItem
object, which appears above the object when it is displayed. The
second argument provides a graphical or pictorial item of the Image
type for the ImageItem object to display. The third argument is of
the int type and is defined in the ImageItem class (see the list
below). The fourth argument is of the String type and provides a
text alternative if no Image object is available for display. The final
argument designates the appearance mode. The appearance mode is
an integer value defined in the Item class and consists of such
properties as Item.BUTTON and Item.HYPERLINK.

Image getImage() Returns a reference to an Image object that has been assigned to an
ImageItem object.

void setImage(Image) Allows you to assign an Image object to an ImageItem object. You
can also use it to change an Image if one has already been
assigned.

int getLayout() This method returns the integer value corresponding to the
ImageItem layout properties you can assign to ImageItem
objects.

void setLayout(int) Allows you to assign layout values to the ImageItem object. These
values are defined in the ImageItem class. See the list below.

String getAltText() Provides the text, if any, that has been supplied as a placeholder for
the Image object the ImageItem provides.

void setAltText(String) Allows you to change the alternative text assigned to the
ImageItem object.

LAYOUT_DEFAULT Causes the default alignment the device provides to be used for the
layout positioning of the ImageItem object.

LAYOUT_CENTER Centers the Image object horizontally.

LAYOUT_RIGHT Aligns the Image object so that it is positioned against the right
border of the ImageItem.

LAYOUT_LEFT Aligns the Image object so that it is positioned against the left
border of the ImageItem.

LAYOUT_NEWLINE_AFTER Appends a line break after the ImageItem.

LAYOUT_NEWLINE_BEFORE Inserts a line break before displaying ImageItem.

Transformation, mirroring, rotation, and other such uses of Image objects exceed

the scope of the discussion in this chapter. However, in subsequent chapters,

where Image objects are used in Sprite objects that are rendered in animated

game frameworks, such topics receive extended attention.

Despite the close association between the Image and ImageItem classes, when you

construct an ImageItem object, you are not required to supply a reference to an

Image object. You can supply the constructor with an argument of null in place of a

reference to an Image object, for example, and then furnish a reference at a later

time. A call can be made to the setImate() method to supply an Image reference.

310 Chapter 11 n Images and Choices

Table 11.3 Image Class Method and Properties

Method Description

Image createImage (byte[], int, int) Creates an immutable image from a byte array in
PNG format.

Image createImage (Image source) Creates an immutable image from another image.

Image createImage (int width,
int height)

Creates a mutable image buffer of a set width and
height.

Image createImage (String) Creates an immutable image using the name of a
resource file.

Image createImage(Image, int x, int y,
int width, int height, int transform)

Allows you to create one Image object from another.
The first argument is of the Image type and allows
you to identify an immutable image. The subsequent
four parameters allow you to designate a region
within this Image object that you can copy to a new
Image object. The final argument is of the int type
and is given by a value defined in the Sprite class.

Graphics getGraphics() Returns a graphics object that allows you to use
Graphics methods on an Image object that calls
this method.

int getHeight() Returns the height, in pixels, of the Image object.

int getWidth() Returns the width, in pixels, of the Image object.

boolean isMutable() Determines whether the image is mutable. If it is
mutable, you can make it immutable by providing it as
an argument to the createImage() method and
assigning the returned reference to an Image identifier.

Sprite.TRANS_ROT90 Rotates a selected region of a specified Image object
clockwise 90 degrees.

Sprite.TRANS_ROT180 Rotates a selected region of an Image object 180
degrees.

Sprite.TRANS_ROT270 Rotates a selected region of an Image object
clockwise 270 degrees.

Sprite.TRANS_MIRROR Reflects an Image object about its vertical axis.

Here is an example of the four-argument constructor of an ImageItem supplied

with null in place of a reference to an Image. The example is modeled on the code

provided in the ImageItemFind class discussed in the next section of this chapter.

for(int ctr = 0; ctr < fileNames.length; ctr+ +){
// #a Construct the Image obect
imageToLoad = Image.createImage(fileNames[ctr]);
// #b Constructor with null Image argument
imageItem = new ImageItem(null, null,

ImageItem.LAYOUT_CENTER,
String.valueOf(ctr));

// #c Image object reference provided afterward
imageItem.setImage(imageToLoad);

//Assign the ImageItem objects to a Vector object
images.addElement(imageItem);

}

In this instance, to review the ImageItem constructor (see comment #b), the first

argument is of the String type and provides a label for the ImageItem object. The

second argument is of the Image type and provides the graphical object the

ImageItem object serves to display. The third argument provides defined values

used to format the display of the ImageItem. The last argument serves as a

substitute for the Image object if it is not available for display. This argument is of

the String type.

Here, the second argument, which asks for a reference to an Image object, is

initially set to null. This creates no problem. In essence, if the ImageItem object

were left without an Image object, then it would serve more or less as a place-

holder in the Form object. However, as the line following comment #c shows, the

ImageItem::setImage() method is called after the construction of the ImageItem

object to supply it with the reference to the Image object. As Table 11.2 details, the

setImage() method allows you to change the Image object associated with the

ImageItem object.

The ImageItemFind Class
An extension of the work begun with the ComedyChoiceGroup, the ImageItemFind

class provides examples of further uses of the Image class. In this setting, you add

a photograph to the quote, providing the user of the MIDlet with both a view of

The ImageItemFind Class 311

the comedian and a representative joke from the comedian’s repertoire. To

implement this class, you again use the Quotes class, but you use an inner class,

Images, which provides largely the same service as the Quotes class, except that

with this class no random selection is made. This class loads files that provide the

data with which to create Image objects, and the Image objects can then be called

based on their position within an array.

As with the previous example, being able to retrieve the index of the selected

ChoiceGroup listing allows you to retrieve an Image object from the Images class

and a String object from the Quotes class. These parallel activities allow you to

simultaneously explore the capabilities of the ImageItem, ChoiceGroup, and

StringItem classes in relation to the Form object and the CommandListener

interface. Figure 11.6 illustrates the interface of the ImageItemFind class at work.

As with other classes in this chapter, you can find the ImageItemFind class in the

Chapter 11 source folder. It is also included in the NetBeans Chapter11MIDlets

project. Operation of the application involves the same actions performed for

the ComedyChoiceGroupMIDlet. You select a comedian from the choice group list

and then press F2 or activate the left soft key to see the picture and the quote.

Here is the code for the ImageItemFind class. The sections following discuss

the code.

312 Chapter 11 n Images and Choices

Figure 11.5
The Images class is an inner class for the ImageItemFind class that provides a service similar to the
Quotes class.

/*
* Chapter 11 \ ImageItemFind.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.IOException;
import java.util.*;

public class ImageItemFind extends MIDlet
implements CommandListener{

// #1
private Display display;
private Form form;
private Command exitCmd;
private Command showCmd;

The ImageItemFind Class 313

Figure 11.6
ImageItem and StringItem objects furnish the basis for depictions of and representative quotes from
selected comedians.

private ChoiceGroup choiceGroupA;
private int defaultChoice;
private int choiceGroupIndex;
private Images images;
private Quotes quotes;

public ImageItemFind(){
// #2
quotes = new Quotes();
images = new Images();

display = Display.getDisplay(this);
form = new Form("Comedians and Their Lines");
choiceGroupA = new ChoiceGroup("Comedians", Choice.EXCLUSIVE);
// Append options; the second (null) argument is for an image
choiceGroupA.append("Groucho Marx", null);
choiceGroupA.append("Phyllis Diller", null);
// Set the default
defaultChoice = choiceGroupA.append(

"G. B. Shaw", null);
choiceGroupA.append("Rodney Dangerfield", null);

// Set the above choice as the initially selected option
choiceGroupA.setSelectedIndex(defaultChoice, true);

exitCmd = new Command("Exit", Command.EXIT, 1);
showCmd = new Command("Show", Command.SCREEN,2);

choiceGroupIndex = form.append(choiceGroupA);
form.addCommand(exitCmd);
form.addCommand(showCmd);
form.setCommandListener(this);

}

// Called by application manager to start the MIDlet.
public void startApp()
{

display.setCurrent(form);
}

314 Chapter 11 n Images and Choices

public void pauseApp()
{ }
public void destroyApp(boolean unconditional)
{ }

// #3
public void commandAction(Command cmd, Displayable s){

if (cmd = = showCmd){
//Obtain the index value of the selection
int selectedValue = choiceGroupA.getSelectedIndex();
// #3.1
StringItem textOfChoice = new StringItem("Comedian’s name: ",

choiceGroupA.getString(selectedValue));
form.append(textOfChoice);

System.out.println(selectedValue);
// # 3.2
ImageItem pictureToShow = new ImageItem(

images.getFileName(selectedValue),
images.findImage(selectedValue),
ImageItem.LAYOUT_CENTER,
String.valueOf(selectedValue));

form.append(pictureToShow);

StringItem textOfJoke = new StringItem("Quote: \n",
quotes.getQuote(selectedValue));

textOfJoke.setLayout(Item.LAYOUT_LEFT |Item.LAYOUT_DEFAULT);
textOfJoke.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.SIZE_MEDIUM |
Font.STYLE_BOLD,
Font.SIZE_LARGE));

form.append(textOfJoke);

// Update the MIDlet to show the choice
form.delete(choiceGroupIndex);
form.removeCommand(showCmd);

}
else if (cmd = = exitCmd){

destroyApp(false);
notifyDestroyed();

}
}

The ImageItemFind Class 315

// #4 = = = = = = = = = = = = == = = = = = = = = = = = = = == = = =

//Inner class
public class Images{

private Vector images;
private final int CHOICES = 4;
private String[] fileNames = new String[CHOICES];

// ImageItem imageItem;
Image imageToLoad;
// #4.1
Images(){

images = new Vector();
setFileNames();
try{
// // #4.2 Construct the ImageItem objects

for(int ctr = 0; ctr < fileNames.length; ctr++){
imageToLoad = Image.createImage(fileNames[ctr]);
images.addElement(imageToLoad);

}
}catch(IOException ioe){

System.out.println("Unable to load image.");
}

}//end ctr

// #5
private void setFileNames(){

fileNames[0] = "/grouchoL.png";
fileNames[1] = "/phyllisL.png";
fileNames[2] = "/georgeL.png";
fileNames[3] = "/rodneyL.png";

}

// #6
public String getFileName(int index){

StringBuffer fileName = new StringBuffer();
if(index > fileNames.length || index < 0){

fileName.append("Not found");
}else{

fileName.append(fileNames[index]);
}
return fileName.toString();

}

316 Chapter 11 n Images and Choices

// #7
public Image findImage(int item){

return (Image)images.elementAt(item);
}

}// end Inner class
//== = = = = = == = = = = = = = = = = = = == = = = = = = = = =

} //end outer class

Construction and Definition

In the lines following comment #1 in the ImageItemFind class, you declare

attributes of the Display, Form, Command, and ChoiceGroup types. You then declare

two attributes that allow you to work with the index values the ChoiceGroup

object generates as you select names of comedians from the list the ChoiceGroup

object offers in the initial display, as Figure 11.7 illustrates. In this iteration of

the interface the small Image objects are no longer included in the ChoiceGroup

listing.

The ImageItemFind Class 317

Figure 11.7
A ChoiceGroup object provides the primary form of interaction.

After setting up the basic interface features of the class, you then declare attributes

(images and quotes) of the Images and Quotes types. The Quotes class already has

been covered in this chapter. The Images class remains to be dealt with. The Images

class provides a ready way to acquire Image objects for display in the context

provided by ImageItem objects.

In the lines associated with comment #2, you proceed with the construction of

the Quotes and Images objects. You then construct the display features of the

application. In addition, with the construction of the Form object, you provide a

title for the display, ‘‘Comedians and Their Lines.’’ The MIDlet includes a

ChoiceGroup that provides a list of four comedians. By assigning the value

returned by the append()method to the defaultChoice attribute, you capture the

value of the index to use as a default setting. To establish the default setting, you

call the setSelectedIndex() method, supplying the value assigned to

defaultChoice as its sole argument.

After setting up the commands and event handler of the Form object by calling the

addCommand() and setCommandListener() methods, you then proceed to process

the messages generated by the ChoiceGroup selections. In the lines trailing

comment #3, use of two StringItem objects and one ImageItem object allows you

to access data provided by the Quotes and Images classes. The code from the

previous iteration of the commandAction() method in this instance is refactored.

Now, rather than repeated calls to the getSelectedIndex()method, only one call

is made, and the returned value is assigned to the selectedValue identifier, which

is of the int type.

Retrieving Images and Defining an ImageItem

Beginning in the lines associated with comment #3.1, you make use of the

selectedValue identifier as an argument to several methods. First, you provide its

value as to the ChoiceGroup::getString() method, where it serves to retrieve the

name of the selected comedian. This comedian’s name is in the construction of a

StringItem object with a label reading ‘‘Comedian’s name’’. Next, after calling

the println() method to print test output to the command line, you move on to

work with methods of the Images class.

The Images class is described in detail in the next section. For now, it is enough to

note the getFileName() method of the Images class returns the name of the

source file used to create an Image object. As Figure 11.7 illustrates, you see this

file name just above the picture of the comedian in the display. As the lines

318 Chapter 11 n Images and Choices

following comment #3.2 show, the getFileName() method takes an argument of

the int type, and the selectedValue identifier provides this value. The file name

returned becomes the first argument to the constructor of the ImageItem object

(pictureToShow) used to display the comedian’s picture.

For the second argument of the ImageItem constructor for the pictureToShow

object you call the Images::findImage() method, which returns the Image object

corresponding to the named comedian. Again, this method takes an argument of

the int type, which the value assigned to selectedValue satisfies.

For the last two arguments of the ImageItem constructor, you provide a defined

value from the ImageItem class (LAYOUT_CENTER). This value causes the ImageItem

object to display the Image object in the horizontal center of the display area. As

the final argument, you use the selectedValue identifier as the argument of the

valueOf() method of the String class, which returns a String reference that

provides text for display as an alternative if the Image object is not available for

the ImageItem object to display.

Having completely defined the pictureToShow object, you then call the Form

::append() method to add the pictureToShow object to the form. At this point, you

proceed to create an instance of a StringItem object. The constructor used to create the

object requires only two arguments. The first argument involves a literal string,

"Quote:\n", which introduces the comedian’s lines. The second argument is satisfied

by the value returned by the Quotes::getQuote()method, which furnishes a randomly

selected joke by the comedian. The selectedValue identifier in this case identifies the

comedian for whom a random joke is to be retrieved.

To increase the legibility of the text displayed by the second StringItem object,

you call the StringItem::setFont() method, supplying it with the same set of

parameters used in the previous iteration of the MIDlet. Following construction

of the StringItem object, you again call the append()method to add it to the Form

object. Having defined the three Item subclass objects, you call the delete() and

removeCommand() methods of the Form class to clear the MIDlet display after you

perform a selection.

Images as an Inner Class

To provide an easy way to access Image objects for display, you implement Images

as an inner class. This class might just as easily be implemented as a separate class,

as is the Quotes class, but given the brevity of the class, it works well as an inner

The ImageItemFind Class 319

class. As Figure 11.8 illustrates, its primary purpose is to provide a way to load

files containing graphical data into Image objects.

Implementation of the Images class begins in the lines associated with comment

#4. To accommodate a set of Image objects, you declare a class attribute of the

Vector type (images). After defining a constant, CHOICES, and assigning it a value

of 4, you create an array of the String type, fileNames, which serves to store the

names of the files that provide graphical data used to create Image objects. You

also define an Image attribute to be used in generic operations needed to create

Image references that are stored in the images Vector object.

In the lines associated with comment #4, you construct the Vector object, images,

and immediately following that, you call the setFileNames()method. Defined in

the lines following comment #5, this method populates the fileNames array with

literal strings representing the source files of the data used to create Image objects.

In each instance, the files are of the *.png type.

Construction of the Image objects is attended to in the lines following comment

#4.2, where a for repetition statement is implemented to iterate through the

fileNames array, providing the file names one after the other as an argument to the

Image::createImage() method. This is a static method that serves as a con-

structor. As Table 11.3 reveals, there are several overloaded versions of this

method; the one employed in this context is the simplest. It loads the data from

the file into an Image object without cropping or otherwise altering it.

As the for block repeats, the flow of the program constructs Image objects and

assigns them to the imageToLoad identifier, which is used as an argument to the

Vector::addElement() method. In this way, the Vector object is populated,

320 Chapter 11 n Images and Choices

Figure 11.8
An inner class retrieves data from PNG files for display.

beginning at index 0, with Image objects representing the loaded files. This action

is enclosed in a try. . .catch block to cover for the errors that the createImage()

method can generate. The error type of the catch clause is IOException.

At comment #6, the getFileName() method is implemented. In this case, after

checking to confirm that the index is within the acceptable range, the name of the

file is retrieved from the fileNames array and returned as a String value. In this

way, it is possible to retrieve the name of the source file used to create the Image

object. Along the same lines, in the lines associated with comment #7, the

findImage() method uses an integer value supplied by the item parameter as an

argument to the Vector::elementAt() method. This method returns a reference

of the Object type, which must be cast to the Image type prior to being returned.

Figure 11.9 provides yet another view of the display.

Conclusion
In this chapter, you have explored the relationships between the Image, the

ChoiceGroup, and the ImageItem classes. You can use miniaturized Image objects

to enhance the display provided by the listing in a ChoiceGroup object, but the

Conclusion 321

Figure 11.9
The ImageItem object readily accommodates the images for the display.

smallness of the images used in this context requires that you restrict their

complexity. As an exercise, pictures of comedians were used in this chapter. With

respect to larger displays, however, the ImageItem object works readily to provide

an easy way to display Image objects. Used in conjunction with StringItem

objects, the ImageItem object provides you with a variety of development alter-

natives. With respect to text-oriented game development, this is an invaluable

tool. To implement the MIDlet classes described in this chapter, you made use of

the Image class in two distinct contexts. On the horizon are further uses of the

Image class involving the Canvas, GameCanvas, Sprite, TiledLayer, and other

classes. Subsequent chapters discuss such uses in detail.

322 Chapter 11 n Images and Choices

Gauges, Dates,
Calendars

Having worked in the previous chapter with the ChoiceGroup, ImageItem, and

Image classes, you are in a position in this chapter to extend your explorations to

two more Item classes, DateField and Gauge, and to add to this still other

experimentation involving the subclasses of the Image class. To supplement your

work with the DateField class, it is useful to examine the Date, Calendar, and

TimeZone classes. These classes are derived from the Object class, and they make it

possible to work in a number of directions as you implement the Image classes.

Moving beyond date and time issues, you also explore the Canvas and Graphics

classes. Work with these two classes anticipates several classes in the Game API,

among which are Sprite and GameCanvas. They likewise provide an excellent way

for you to accustom yourself to using the paint() method as you work with

graphical activities. The features provided by the Image and Graphics classes

provide the basis for your movement away from textually oriented development

activities and into the graphical realm.

Calendar and Date
Before discussing the DateField class, it is helpful to review the Calendar class,

which is derived from the Object class. The Calendar class is one of the two

primary classes you employ as you work with programming activities involving

time and date information. The other primary class in this respect is Date. Both of

these classes are supplemented by the TimeZone class. The Calendar and Date

323

classes provide fairly complex objects. For example, the Calendar class furnishes

you with a calendar you can scroll through to find specific dates far into the past

or future. When using the Calendar object, you can activate the day by posi-

tioning the cursor on it and then generate an event that you can process in any

number of ways.

You can use a reference generated by the Date class to initialize a Calendar

object, and by using the TimeZone class, you can adjust for time zones. The

CalendarFortune class makes use of the Calendar and Date classes to explore a few

of the methods associated with the two classes. Along with the messages, this

chapter explores a few of the extensive list of defined values. The defined values

allow you to set and retrieve date and time values. Table 12.1 provides a sampling

of the Calendar class options along with a list of the defined values. Figure 12.1

illustrates a Calendar object. By using SELECT button, you can change the

month, and beneath that, enter the days of a given month. From there you can

initiate an event associated with the day, the month, or the year. Generally, you

retrieve the information you require from the event message.

No t e

The interface of the Date class consists of only a few methods. In contrast, the interface of the
Calendar class provides many. For more information, see the full class documentation at http://
java.sun.com/javame/reference/apis/jsr118/. This page provides links to the Date and
TimeZone classes.

As is emphasized in the CalendarFortune class, you can use constant or dynamic

approaches to initializing the date value of a Calendar object. Here is how you

can set values using the constants the Calendar class provides.

Calendar calendarA = Calendar.getInstance();
calendarA.set(Calendar.YEAR, 1857);
calendarA.set(Calendar.MONTH, Calendar.DECEMBER);
calendarA.set(Calendar.DAY_OF_MONTH, 3);

Using this approach, the first calendar you see is set for 1857. The index of

December, if you retrieve its corresponding integer value, is 11, not 12. January is

0. The day of the month is set at December 3. This is the novelist Joseph Conrad’s

birthday.

Alternatively, you can use a reference to a Date object to initialize the date. If you

use this approach, then you obtain the current system time. To accomplish this

324 Chapter 12 n Gauges, Dates, Calendars

http://java.sun.com/javame/reference/apis/jsr118/
http://java.sun.com/javame/reference/apis/jsr118/

Calendar and Date 325

Table 12.1 Selected Calendar, TimeZone, and Date Methods and Fields

Method/Field Description

Calendar() Constructs a Calendar object with default time zone.

int get(int) Gets the value for a given time field designated by one of the defined
values for the Calendar class.

Calendar getInstance() A static method that returns an instance of a Calendar object.
Use this in place of a constructor: Calendar newCal = Calendar.
getInstance().

Calendar getInstance
(TimeZone)

Takes an argument of the TimeZone type. Provides an instance of a
Calendar object using the specified time zone.

Date getTime() Retrieves the current time of the Calendar object.

TimeZone getTimeZone() Returns an object of the TimeZone type. It identifies the time zone
with which the Calendar object is associated.

set(int, int) The first argument is a defined value or an integer designating a field
defined in the Calendar class, such as MONTH or YEAR. The second
argument sets the value for the field.

void setTime(Date) This method takes a reference to a Date object as its argument. You
can use it, among other things, to set the current date.

void setTimeZone(TimeZone) This method takes a reference to a TimeZone object as its argument.

Defined values You use theses values to set and retrieve values using, among
others, the set() and get() methods: AM, AM_PM, APRIL, AUGUST,
DATE, DAY_OF_MONTH, DAY_OF_WEEK, DECEMBER, FEBRUARY,
FRIDAY HOUR, HOUR_OF_DAY, JANUARY, JULY, JUNE, MARCH,
MAY, MILLISECOND, MINUTE, MONDAY, MONTH, NOVEMBER, OCTOBER,
PM, SATURDAY, SECOND, SEPTEMBER, SUNDAY, THURSDAY, TUESDAY,
WEDNESDAY, and YEAR.

Date() Constructor for the Date class. You can use the constructor to initialize
Calendar and DateField objects. The value the constructor provides
is the number of milliseconds elapsed since January 1, 1970, 00:00:00
GMT. Typical use: calendarObj.setTime(new Date().

TimeZone::getTimeZone() Constructor for the TimeZone class. Like the Date class constructor,
this constructor allows you to initialize Date and Calendar objects
so that they are identified with specific time zones. Here is an example
of its use with the static getTimeZone() method:
TimeZone timeZone =
TimeZone.getTimeZone("PST").

Figure 12.1
The Calendar class generates a substantial object that allows you to find dates extending well into the
past or future.

task, you can use the set method and supply a reference to a newly created

instance of the Date class. Here is an example.

calendarB.setTime(new Date());

DateField
Along with the Calendar and Date classes, the DateField class allows you to

readily display and process messages related to time and date events. Derived

from the Item class, the DateField class provides an interface that shares many of

the features available to the other subclasses of the Item class. The primary

difference involves defined values related to setting and formatting date and time

information. Formatting the mode of display for the time and date information

is accomplished using the setDate() and setInputMode() methods. You can also

set the class constructor.

As Table 12.2 indicates, one version of the constructor allows you to set a label

and the mode of display for the date or time. A second constructor allows you to

designate the time zone in addition to the mode of display. Defined values in the

DateField class furnish three modes of display. The DATE value used alone allows

you to view the date information alone. The DATE_TIME value provides both time

and date information. The TIME property allows you to view the time alone.

Figure 12.2 shows a clock generated using the TIME option.

The CalendarFortune Class
The CalendarFortune class allows you to see how a few of the methods of the

Calendar and DateField classes work together to make it possible to set, transfer,

and retrieve information relating to date and time. In the process, you explore

the defined values the two classes provide. Use of the Date class proves important

throughout, and to provide a contrast and review, use is made of the StringItem

class and some of the formatting capabilities provided by the Item class. You can

find the CalendarFortune class in the NetBeans Chapter12MIDlets project file

and, in a standalone version, in the Chapter 12 source code file. When you run

the MIDlet, you see a calendar. You then use the SELECT arrows and the soft

keys to invoke an event. The event generates a specific date and with it a predi-

cation or advisory relating to the date.

326 Chapter 12 n Gauges, Dates, Calendars

The CalendarFortune Class 327

Table 12.2 DateField Methods and Properties

Method/Property Description

DateField (String, int) Constructs a new DateField using the specified label and mode. The
first argument is of the String type and provides a label for the field.
The second argument is of the int type and is one of the modes
presented last in this table.

DateField (String, int,
TimeZone)

Constructs a new DateField. The first argument is of the String
type and provides the label for the field. The second argument is of the
int type and is one of the three defined modes listed last in this table.
The third argument is of the TimeZone type.

Date getDate() Returns the value of the Date type using the display mode assigned to
the Date object.

int getInputMode() Returns the mode that has been applied to the field.

setDate(Date) Allows you to set the date assigned to the Date object. To set the
current date, use dateFObj.setDate(new Date).

setInputMode(int) Assigns a mode of input to the field.

DATE A mode of display. Allows you to view calendar dates and generate
events related to them.

DATE_TIME A mode of display. Provides both time and date settings. In other words,
you see a clock and a calendar.

TIME A mode of display. Restricts what you see to a view of the time alone.

Date() Constructor for the Date class. You can use the constructor to initialize
Calendar and DateField objects.

TimeZone::getTimeZone() Constructor for the TimeZone class. Typical use:
DateField date = new DateField ("date",
DateField. DATE,
TimeZone.getTimeZone("GMT")).

Figure 12.2
Use of the defined values allows you to view information differently.

/*
* Chapter 12 \ CalendarFortune.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*;

public class CalendarFortune extends MIDlet
implements ItemStateListener,

CommandListener{
// #1
private Display display;
private Form form;
private Command exitCmd;
private DateField currentDate;
private StringItem arbDate;
private StringItem prospect;
private Random random;
private Calendar calendarA;
private Calendar calendarB;

public CalendarFortune(){
// #2
random = new Random();
display = Display.getDisplay(this);
form = new Form("Calendar Fortune");

// #2.1
calendarA = Calendar.getInstance();
calendarB = Calendar.getInstance();

// Calendar set() and get()
calendarA.set(Calendar.YEAR, 1857);
calendarA.set(Calendar.MONTH, Calendar.DECEMBER + 1);
calendarA.set(Calendar.DAY_OF_MONTH, 3);

// #2.2
// Retrieve string values

328 Chapter 12 n Gauges, Dates, Calendars

String month = String.valueOf(calendarA.get(Calendar.MONTH));
String dayOfMonth = String.valueOf(

calendarA.get(Calendar.DAY_OF_MONTH));
String year = String.valueOf(calendarA.get(Calendar.YEAR));
//Display
arbDate = new StringItem("Conrad: \n",

month + "/" +
dayOfMonth + "/" +
year);

arbDate.setLayout(Item.LAYOUT_CENTER | Item.LAYOUT_DEFAULT);

// #2.3
// Set with the current date
calendarB.setTime(new Date());

//Format StringItem
arbDate.setLayout(Item.LAYOUT_CENTER | Item.LAYOUT_NEWLINE_BEFORE);

// #3
//DateField creation and formatting
currentDate = new DateField("Current date:", DateField.DATE_TIME);
currentDate.setDate(new Date());
currentDate.setLayout(Item.LAYOUT_CENTER |
Item.LAYOUT_NEWLINE_BEFORE);

// #3.1
form.append(arbDate);
form.append(new Spacer(50, 20));
form.append(currentDate);

exitCmd = new Command("Exit", Command.EXIT, 1);
form.addCommand(exitCmd);
form.setCommandListener(this);
form.setItemStateListener(this);

}

public void startApp(){
display.setCurrent(form);

}

The CalendarFortune Class 329

public void pauseApp(){
}

public void destroyApp(boolean unconditional){
}

public void commandAction(Command cmd, Displayable dsp){
if (cmd = = exitCmd){

destroyApp(false);
notifyDestroyed();

}
}

// For event from the calendar
public void itemStateChanged(Item item){

//Clear for new view
// #4
form.deleteAll();
// The date selected from the calendar
StringItem newSItem = new StringItem("Year of birth: ",

String.valueOf(
calendarA.get(Calendar.YEAR)));

newSItem.setLayout(Item.LAYOUT_LEFT);

// #4.1
DateField newDField = new DateField("Date", DateField.DATE);
newDField.setDate(currentDate.getDate());
newDField.setLayout(Item.LAYOUT_LEFT);

// #4.2
prospect = new StringItem("Today’s prospects: ", getProspects());
prospect.setLayout(Item.LAYOUT_LEFT);
form.append(newSItem);
form.append(new Spacer(150, 20));
form.append(newDField);
form.append(new Spacer(150, 20));
form.append(prospect);

}

// #5
protected String getProspects(){

String prospects[] =
{"Indifferent - - Boring? Maybe it is time for a change.",

330 Chapter 12 n Gauges, Dates, Calendars

"Promising - - Indeed, so watch for opportunities.",
"Hazardous - - Yes, it happens. Watch for ice!",
"Luscious - - Delectable and inviting. Good for you!",
"Inviting - - Have at it!",
"Puzzling - - It’s always nice to find" +
" inviting challenges.",
"Mordant - - Probably best to sit this one out.",
"Muddled - - It’s okay. Just think of it as fog.",
"Hilarious - - Laugh while the going’s good!",
"Ridiculous - - Don’t worry. It’ll pass."};

// #5.1
int randInt = 0;
randInt = random.nextInt(prospects.length);
String val = prospects[randInt];
return val;
}

}//end class

Construction and Definition

In the lines following comment #1 of the CalendarFortune class, you declare

Display, Form, and Command attributes. You then follow with a DateField attri-

bute, currentDate. Following the declaration of the DateField attribute, you then

declare two StringItem attributes. This then provides three class attributes

derived from the Item class. You then declare two Calendar attributes. As

mentioned previously, the Calendar class is derived, like the Date class, directly

from the Object class. The Date, Calendar, and TimeZone classes are all provided

by the java.util package. One additional attribute, of the Random type, allows

you to generate random numbers. This class is also provided by the java.util

package and is directly derived from the Object class.

The constructor for the CalendarFortune class is defined starting with the lines

associated with comment #2. The first action in this respect is the creation of a

Random object, which is assigned to random, a class attribute. You then create

instances of the Display and Form classes, assigning them to the display and form

attributes.

Following comment #2.1, you begin working with the Calendar attributes.

Accordingly, you call the static Calendar::getInstance() method to create

instances of the Calendar class. They are assigned to the calendarA and calendarB

The CalendarFortune Class 331

attributes. The getInstance() method serves as a default constructor for

Calendar objects. To assign a value, you call the Calendar::set() method.

The set()method takes two arguments, both of the int type. The first argument

allows you to designate a position in a value array associated with the Calendar

object. To do so, you first use the Calendar.YEAR property to assign 1857 to the

year value associated with the Calendar. Next, you use the Calendar.MONTH

property to set the month. For the value assigned, you apply the Calendar.

DECEMBER property. The actual value of the DECEMBER property is 11 instead of 12,

because the months associated with the Calendar class begin with January set to

the 0 index. To make it so that when the value is retrieved the recognized integer

value of 12 can be returned, you augment the value of the month by 1.

In addition to the YEAR and MONTH properties, you also draw on the DAY_OF_MONTH

property, in this case complementing it with 3. The resulting date, December 3,

1857, is the birthday of Joseph Conrad, author of Lord Jim andHeart of Darkness,

to name two of his novels. As Table 12.1 shows, an extensive list of defined values

is provided by the Calendar class, covering all the months of the year and a few

additional time and day values.

To complement the use of the set() method, in the lines associated with com-

ment #2.2, you call the get() method. The get() method requires only one

argument. The argument is, once again, one of the defined values provided by the

Calendar class. In the first call to the get() method, you use the Calendar.MONTH

value. In the second, you employ the DAY_OF_MONTH property. In the third

instance, you furnish the Calendar.YEAR value. In each case, the value you pro-

vide retrieves a value from an array associated with the Calendar class.

To make use of the values you retrieve from the Calendar array, you convert the

integer values that the set() method returns into String values. To accomplish

this, you call the static valueOf() method of the String class. Overloaded to

accommodate all of the primitive data types, the valueOf() method returns a

String that you then assign to the month, dayOfMonth, and year identifiers. You

then use these three identifiers to form a concatenated string that you provide as

the sole argument to the StringItem class constructor. You then assign the instance

of StringItem to the arbDate identifier. You can then call the setLayout()method,

common to the Item class object, to position the date string for display. In this case,

you use the LAYOUT_CENTER property, provided by the Item class, to center the

StringItem object horizontally when it is displayed.

332 Chapter 12 n Gauges, Dates, Calendars

Using the Date and DateField Classes

As the previous section revealed, you can set the date associated with a Calendar

object by using integer values and the values provided by the Calendar class. In the

line associated with comment #2.3, you follow a different approach. This one

involves creating a reference to a Date object. The Date object furnishes the Calendar

object with the values needed to define the current state of the Calendarusing values

for the current date. Later in the program, when you retrieve the values assigned to

the calendarA and calendarB class attributes, you see both the date associated with

Conrad and the current date as generated by the Date class reference.

Further use of the Date class is made in the lines following comment #3. Here,

you start by creating a new instance of a DateField object. To create the new

instance of the DateField object, you call a version of the DateField constructor

that requires two arguments. The first argument provides a label for the Date-

Field object. The second argument provides a defined value that specifies the

type of date representation you want to see. As Table 12.2 reveals, you have three

options in this respect. In this case, you choose the option that provides two

representations, one oriented toward a clock, the other toward a calendar

representation. In other words, the DATE_TIME value of the DateField class des-

ignates that both date and time representations of the data are available to you.

Once the instance of the DateField class is assigned to the currentDate attribute,

you call the setDate() method of the DateField class. This method requires an

argument of the Date type, and in this case, you supply an anonymously con-

structed instance of a Date object as the argument. This then provides date and

time values to the DateField object that correspond to the current date and time.

Given the assignment of the date to the DateField attribute, you then proceed to

call the setLayout() method to format the attribute for display. As with

StringItem and the other classes of the Item class, you use the LAYOUT_CENTER

value to force the DateField object into the horizontal center of the display.

Beyond formatting, the only activity that remains to be carried out in the con-

structor involves calling the Form::append() method to append the items you have

constructed to the initial display. You use the addCommand() and addCommand-

Listener() to set up message processing for the Form object. You call the setItem-

StateListener() method to process messages issued by the Item objects. With the

invocation of the startApp() method and the accompanying call to setCurrent(),

you see the display shown in Figure 12.3.

The CalendarFortune Class 333

Event Processing

The top field in Figure 12.3 is the field you generate using the String identifiers

and the StringItem object. ‘‘Conrad:’’, the label, and 12/3/1857, the date, are

both String values. On the other hand, the ‘‘Current date:’’ label identifies

the result of the assignment of the Date object to the DateField object. This

object differs in significant ways from the StringItem object. In the first place, as

Figure 12.4 illustrates, if you use the SELECT button, you can toggle between the

date and the time values. If you use the soft keys or in another way invoke an

action while one or the other is selected, you see different results.

Reviewing the figures shown earlier in the chapter, Figure 12.5 illustrates the two

options. Selecting the time, you see the time. Selecting the date, you see a

calendar.

The date and calendar displays provide a vehicle for further event processing.

With respect to the calendar representation, the state to which you set the object

can then be propagated using event processing.

334 Chapter 12 n Gauges, Dates, Calendars

Figure 12.3
Using the StringItem and DateField classes, two dates are displayed.

Generating Events from the Calendar

In the code associated with comment #4 of the CalendarFortune class, you

implement the itemStateChanged() method of the ItemStateListener interface.

In the line immediately following comment #4, call the Form::deleteAll()

method to remove features and commands from the MIDlet. You can then

reintroduce features as needed, displaying them on a clean slate. To generate

The CalendarFortune Class 335

Figure 12.5
Time and date events evoke different responses.

Figure 12.4
Each field generates a different message, allowing you to view a different result.

content for the new display, you begin by defining a local StringItem object,

newSItem. To assign a value to this object, you provide the constructor of the

StringItem object with text for the label, ‘‘Year of birth:’’. For the field value, you

employ the get() method of the Calendar class to allow the calendarA attribute

to retrieve the value of the year you have assigned to it. The value returned by the

get() method is of the int type, so it is necessary to call the String::valueOf()

method to convert it to the String type. Given the definition of the StringItem

object, you can then call the setLayout() method—inherited from the Item

class—to post the StringItem object against the left edge of the display.

The year of Conrad’s birth now set for display, you can move on to create a

second DateField object, newDField. When you construct this object, you pro-

vide it with a string constant for the label, ‘‘Date’’, and then use the Date-

Field.DATE value to set the mode of the DateField object so that it displays dates

alone. In the next line, you call the setDate() method of the DateField to set the

date using the date value you retrieve from the calendarA object. To retrieve the

date value, you call the Calendar::getDate() method, which returns a value of

the Date type. You are then in a position to call the setLayout() method, and

with the StringItem object, you format the DateField object so that when it is

displayed it rests on the left edge of the display.

Prognostication

To make some predictions or provide some prospects associated with each

calendar date, you implement the code that follows comment #4.2. Here you first

assign a value to the prospect attribute, which is of the StringItem type. To

obtain the value to assign to the attribute, you call the getProspects() method.

You assign the value returned by this method as the second argument of the

StringItem constructor. For the first argument, which provides the label for the

StringItem object, you furnish a string constant, ‘‘Today’s prospects:’’.

How the value assigned to the prospect attribute is generated becomes evident in

the lines following comment #5, where the getProspects() method is defined.

The method provides, first, for the definition of an array of the String type,

prospects. The definition of the array involves a comma-delimited set of strings,

each of which provides an adjective followed by some type of comment. The list

is limited for purposes of the application, but given the use of an RMS com-

ponent, it obviously could be extended to accommodate many more values, each

of which might be retrieved via an identifier corresponding to a given date value.

336 Chapter 12 n Gauges, Dates, Calendars

To make it so that the prognostications can be randomly retrieved by the

getProspects() method, you use the Random object (random) to call the nextInt()

method.As anargument to thenextInt()method, youuse the value returnedby the

length attribute associated with the array. This returns the number of items in the

array. Since the nextInt() method returns values extending from 0 up to but not

including thenumber givenas an argument to the nextInt()method, you are in this

waygivena rangeofnumbers that corresponds to all the items in the array.Retrieved

from the prospects array, the prediction is assigned to the local val identifier and

then returned by the method. This approach to the return value is redundant, so

some refactoring could reduce the final three statements to a single line:

return prospects[random.nextInt(prospects.length)];

For purposes of discussion, however, the less optimized version proves friendlier.

Operations

When you operate the CalendarFortune application, you see the work of the

Date, DateField, and Calendar classes at work in a number of ways. To review

two scenarios, consider first navigating from the date to the calendar, and then

invoking the final display with the event generated by the calendar-year date

alone. As the sequence shown in Figure 12.6 illustrates, in the end you see the

The CalendarFortune Class 337

Figure 12.6
The date event invokes the calendar display, and if left on the year, the calendar then furnishes the
current date, while the set date remains the same.

current date supplied by the reference to the Date class, which by default supplies

the current date. At the same time, you also see the fixed value representing

Conrad’s year of birth.

In the second example, as shown in Figure 12.7, the calendar example is set to

October 4, 1957, the day the Sputnik became the first artificial satellite to make its

way into space. In this instance, by selecting the date from the first screen and

then selecting the year, month, and day values from the calendar, it is possible to

generate a date value other than the current date. In this case, then, the date

furnished by the reference to the Date class is replaced by the date the object

generates as you adjust it.

Gauge
The Gauge class provides objects that allow you to audit timed activities, such as

the download or retrieval of data. The objects you can generate using the Gauge

class can be interactive or noninteractive. As Table 12.3 reveals, the constructor

for the Gauge class allows you to name the Timer class and indicate whether it

should be interactive or noninteractive. The difference between the two modes is

that when a Gauge object is interactive, you can set its counter to a value within

the range you have defined for it. As the discussion of the Gauge constructor

338 Chapter 12 n Gauges, Dates, Calendars

Figure 12.7
Adjusting the date alters the default value set by the Date object reference.

Gauge 339

Table 12.3 Selected Gauge Methods and Values

Method/Value Description

Gauge (String, boolean,
int, int)

This is the constructor for the Gauge class. The first argument
is of the String type and provides a label for the Gauge
object. The second argument is of the boolean type and
establishes whether the Gauge object is to be interactive---in
other words, whether it dynamically responds to events. The
third argument is of the int type and establishes the maximum
number to which the Gauge object can count. The last argument
is also of the int type. It establishes the initial count value of the
Gauge object.

int getMaxValue() Returns an integer that indicates the maximum value assigned
to the Gauge object.

void setDefaultCommand(Command) Accepts a value of the Command type and allows you to
associate a Command object with the Gauge object so that
events can be handled.

void setMaxValue(int) This method takes an argument of the int type, which
establishes the maximum value of the count the gauge tracks.

void setLayout(int) Allows you to associate a layout. The sole argument is a
defined value provided by the Item class.

void setPreferredSize(int, int) This method takes two arguments, both of the int type. The
first sets the width of the Gauge object as it is displayed. The
second sets the height of the Gauge object.

int getValue() This method returns a value of the int type. The value
returned indicates the current value of the count.

void setValue(int) This takes different values, depending on whether the Gauge
is interactive or noninteractive. If it is a noninteractive gauge
and has been defined with an indefinite range, then you
are restricted to the following values: CONTINUOUS_
IDLE, INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or
INCREMENTAL_UPDATING. If it is interactive, then the value
is set in the range between the minimum and maximum.
Negative numbers are set to zero. Numbers larger than the
maximum are set at the maximum.

boolean isInteractive() The value returned by this method indicates whether the
gauge is interactive. The returned value is of the boolean
type. A value of true establishes that the Gauge object is
interactive.

INDEFINITE Indicates that the Gauge has an indefinite range.

CONTINUOUS_IDLE Shows that no work is in progress.

CONTINUOUS_RUNNING After this value is assigned, the Gauge counts automatically.
This is continuously updated and shows work in progress.

INCREMENTAL_UPDATING Provides a Gauge that can accommodate an indefinite
incremental count.

provided in Table 12.3 indicates, you set this range with the final two arguments

in the constructor. The first of these sets the end or maximum value the Gauge

counter accommodates. The last sets the starting value.

In the operation of a noninteractive gauge, the Gauge object provides a graphical

representation of a process. In the example provided in the current chapter, this

is a series of values generated by a Timer object. This is just one of many possible

applications. Figure 12.8 illustrates the general scheme of things. The time is

involved and then traces events through a sequence that is defined by its mini-

mum and maximum values. When its maximum is reached, the Gauge object

halts, revealing that the process it was defined to trace (a series of integer values,

for example) has terminated.

As Table 12.3 shows, the interface for the Gauge class provides methods for setting

the maximum value. The method for setting the maximum value is setMax-

Value(), which takes an int value as an argument. The method you use to set the

minimum or start value is the setValue() method. In addition to the minimum

value, you can also use this method to set the counter at any value in the defined

range. One other method that proves important is the getValue()method, which

allows you to use the Gauge object to mediate or trace an event as it is moderated

by the count the object provides. A Gauge object defined with a count of 14 can

issue 14 distinct messages.

340 Chapter 12 n Gauges, Dates, Calendars

Figure 12.8
The noninteractive Gauge object generates a graphical representation that traces events that involve
issuing integer values corresponding to the ticks of a timer or some other traceable process.

The SonnetMaker Class
You can find the SonnetMaker class included in the NetBeans Chapter12MIDlets

project and as a standalone file in the Chapter 12 source folder. The SonnetMaker

class illustrates the use of a noninteractive Gauge object. The noninteractive Gauge

object displays status bars to audit the timed process of retrieving lines of a sonnet

from an array at intervals of a second each. The timing activity is made possible by

the Timer and TimerTask objects, and the lines of the sonnet are provided by a

Vector object. To accommodate the TimerTask and Vector activities, two inner

classes, CompositionTask and Sonnets, are defined. As its name implies, the Com-

positionTask class specializes the TimerTask class and provides an object that you

can use to control the action of the Gauge object. The Sonnets class wraps the

interface of a Vector object and allows you to sequentially retrieve lines of

Shakespeare’s Sonnet 29.

/*
* Chapter 12 \ SonnetMaker.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*; //Time and TimerTask
import java.lang.*;

public class SonnetMaker extends MIDlet
implements CommandListener{

// #1
private Display display;
private Form form;
private Command exitCmd;
private Command stopCmd;
private Gauge sonGauge;
private Timer sonTimer;
private CompositionTask compTask;
private Sonnets sonnets;

// #2
public SonnetMaker(){

sonnets = new Sonnets();
display = Display.getDisplay(this);

The SonnetMaker Class 341

form = new Form("Compose a Sonnet");

sonGauge = new Gauge("Sonnet Progress", false, 14, 0);
exitCmd = new Command("Exit", Command.EXIT, 1);
stopCmd = new Command("Stop", Command.STOP, 1);

form.append(sonGauge);
form.addCommand(stopCmd);
form.setCommandListener(this);

}

// #3
public void startApp()
{

display.setCurrent(form);
sonTimer = new Timer();
CompositionTask compTask = new CompositionTask();
sonTimer.scheduleAtFixedRate(compTask, 0, 1000);

}

public void pauseApp()
{ }

public void destroyApp(boolean unconditional)
{ }

// #4
public void commandAction(Command c, Displayable s)
{

if (c = = exitCmd)
{

destroyApp(false);
notifyDestroyed();

}
else if (c = = stopCmd)
{

sonTimer.cancel();
form.removeCommand(stopCmd);
form.addCommand(exitCmd);
sonGauge.setLabel("Reading cancelled!");

}
}

342 Chapter 12 n Gauges, Dates, Calendars

//-- - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - -
// Inner Class for compostion timer
// #5
private class CompositionTask extends TimerTask{

// # 5.1
StringItem lineItem;
CompositionTask(){

lineItem = new StringItem("", "");
}

// #5.2
public final void run(){

int currentValue = sonGauge.getValue();
if (currentValue < sonGauge.getMaxValue()){

System.out.println("First: \t\t" + sonGauge.getValue());
currentValue + = 1 ;
sonGauge.setValue(currentValue);
sonGauge.setLabel("Line: " + currentValue);
int line = currentValue - 1;
System.out.println("Second: \t" + sonGauge.getValue());
// 5.3
lineItem = new StringItem("", sonnets.getLine(line));
lineItem.setLayout(Item.LAYOUT_LEFT | Item.LAYOUT_DEFAULT);
lineItem.setFont(Font.getFont(Font.FACE_PROPORTIONAL,

Font.STYLE_BOLD,
Font.SIZE_SMALL));

form.append(lineItem);
}else{

// 5.4
form.removeCommand(stopCmd);
form.addCommand(exitCmd);
sonGauge.setLabel("Done!");
cancel();

}
}

}//end inner class

//-- - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - - - - -
//Inner class for the sonnet

// #6
private class Sonnets{

The SonnetMaker Class 343

private Vector sonnet29;
// #6.1
public Sonnets(){

sonnet29 = new Vector();
makeSonnet();

}
// #6.2
public String getLine(int line){

String sonnetLine = new String();
if(line < sonnet29.size() && line >= 0){

sonnetLine = sonnet29.elementAt(line).toString();
}else{

sonnetLine = "-";
}
return sonnetLine;

}
// #7
private void makeSonnet(){

sonnet29.addElement("When, in disgrace with fortune " +
"and men’s eyes,");

sonnet29.addElement("I all alone beweep my outcast state");
sonnet29.addElement("And trouble deaf heaven with my " +

"bootless cries");
sonnet29.addElement("And look upon myself and curse my fate,");
sonnet29.addElement("Wishing me like to one more rich in hope,");
sonnet29.addElement("Featured like him, like him " +

"with friends possess’d,");
sonnet29.addElement("Desiring this man’s art and that " +

"man’s scope,");
sonnet29.addElement("With what I most enjoy contented least;");
sonnet29.addElement("Yet in these thoughts myself " +

"almost despising, ");
sonnet29.addElement("Haply I think on thee, and then my state,");
sonnet29.addElement("Like to the lark at break of day arising");
sonnet29.addElement("From sullen earth, sings hymns " +

"at heaven’s gate;");
sonnet29.addElement("For thy sweet love remember’d " +

"such wealth brings");
sonnet29.addElement("That then I scorn to change my " +

"state with kings.");
}

}//end Sonnets class
}//end outer class

344 Chapter 12 n Gauges, Dates, Calendars

The SonnetMaker Class 345

Construction and Definition

In the lines trailing comment #1 in the SonnetMaker class, you declare Display,

Form, and Command attributes. You then declare a Gauge attribute, sonGauge. You

also declare attributes of the Timer and CompositionTask classes. The inner

CompositionTask class, as is discussed further on, is a specialized version of the

TimerTask class. For the last attribute in the list, you create an identifier using the

Sonnets data type, which like the Composition data type is made possible by an

inner class.

In the lines associated with comment #2, you define the constructor for the

SonnetMaker class. As a first statement, you call the constructor for the

Sonnets class and assign the instance you create to the sonnets attribute.

After that, you create an instance of the Display class, which you assign to

the display attribute, and an instance of the Form class, which you assign to

the form attribute. From there you move on to work with the constructor of

the Gauge class.

The constructor for the Gauge class requires four arguments. The first

argument, of the String type, provides the label for the Gauge. The second

argument, which is of the boolean type, establishes whether the Gauge object

is interactive or noninteractive. A value of false sets the object to be

noninteractive, which means that its action cannot be interrupted by the

user after it has been initiated. In this case, such a course of action prevents

the user from promoting the counter of the Gauge object, allowing it to

completely increment through its count and display all the lines of the

sonnet.

A sonnet is a poem with 14 lines, and in this instance, the number of lines

in the sonnet is anticipated by the final two values provided to the con-

structor for the Gauge object. The penultimate argument, 14, sets the

maximum count value of the Gauge object. This argument is always of the

integer (int) type. The final argument, also of the int type, sets the value of

the initial count. In other words, when the Gauge object is constructed, its

first issued value is 0.

The final statements in the SonnetMaker constructor provide for the creation

of the two Command objects (exitCmd and stopCmd) and the use of the Form::

append() method to add the Gauge object to the Form object (form). The stopCmd

object generates an event that stops the progress of the counter. The exitCmd

closes the MIDlet. You call the addCommand() and setCommandListener()methods

to fully implement capabilities for handling messages.

CompositionTask

The startApp()method requires a bit more discussion in this exercise than it has

in others in this book. The reason for this is that it contains lines that pertain to

the generation of events in the context provided by the Gauge application.

Accordingly, in the lines following comment #3, you call the constructor of the

Timer class and assign the instance of the class to the sonTimer attribute.

Having created a Timer object you then proceed to create a CompositionTask

object. This is a specialized version of the TimerTask class. You assign it to the

compTask identifier, and then use it as the first argument in the Timer::schedule-

AtFixedRate() method. In one of its overloaded versions, this method takes a

TimerTask reference as its first argument. Its second argument designates the

delay following its construction for its first execution. The last argument is

the period between executions. In this case, the period is set at one second

(1000 milliseconds).

The definition of the CompositionTask class is presented in the lines following

comment #5. As has been repeatedly mentioned, this class extends (specializes)

the TimerTask class. To specialize the TimerTask, you must implement the run()

method, but in this case, you also add a constructor to the class. The constructor

is defined in the lines following comment #5.1. You first define a class attribute,

lineItem, which is of the StringItem type. The constructor serves largely to

initialize this attribute. It does so by assigning empty character strings to the label

and field value of the StringItem object (the first and second arguments,

respectively).

The implementation of the run() method begins in the lines following comment

#2. There you first define a local identifier, currentValue, to which you assign the

current value of the counter of the Gauge object (sonGauge). As an inner class, the

CompositionTask class can access all the attributes of the containing SonnetMaker

class, and for this reason, the use of the sonGauge attribute in this context creates

no problem. To obtain the current value of the counter, you call the Gauge::get-

Value() method.

After setting the initial value of the currentValue identifier, you then test its value

using a selection statement. The test verifies that the counter value returned by

the getValue() method is less than the maximum counter value, which is

returned by the Gauge::getMaxValue() method. Having verified that the current

count is less than the maximum allowed count, the flow of the program then can

proceed into the selection block.

346 Chapter 12 n Gauges, Dates, Calendars

The first action performed within the block involves incrementing the value

of the count. This is accomplished by incrementing the value assigned to

currentValue by 1. You then pass the increment value to the setValue()method,

which advances the counter by one. This causes the counter progress bar to move

forward.

Adv a n c i n g t h e C o un t e r

The run() method is invoked with each tick of the counter. Using this event, you use parallel
calls to the getValue() and setValue() methods of the Gauge class to advance the
counter. To track the two successive calls, you can uncomment the test code that appears prior to
comment #5.3:

System.out.println("First: \t\t" + sonGauge.getValue());
currentValue + = 1 ;
sonGauge.setValue(currentValue);
sonGauge.setLabel("Line: " + currentValue);
int line = currentValue - 1;
System.out.println("Second: \t" + sonGauge.getValue());
// 5.3

Here is the output the two println() methods generate to the output pane of NetBeans:

First: 1
Second: 2
First: 2
Second: 3
First: 3
Second: 4

Displaying the Lines

To display the lines of the sonnet, you call the setLabel() method of the Gauge

class and assign a message to it that consists of a String constant, ‘‘Line’’, con-

catenated with the value assigned to the line identifier. When you initialize the

line identifier, you must subtract 1 from the value of currentValue, because the

line you display is identified as an array (or Vector) value, the indexes of which

begin at 0.

As the lines following comment #5.3 show, to retrieve the line of the sonnet, you

call the Sonnets::getLine()method, which takes as an argument the index of the

line you want to retrieve. As just mentioned, these begin at 0. When you retrieve

the line, you use it as the second argument of the StringItem constructor. The

The SonnetMaker Class 347

first argument, providing the label for the item, you assign an empty character

string (""). To make it so that each line of the display requires only one line, you

employ the setFont() method of the StringItem class and call the static

Font::getFont() method to set the display font face so that it is small, bold, and

proportional. You then call the append method of the Form class to display the

successive lines. Figure 12.9 illustrates the lines as they are being written with the

advance of the counter.

Finishing the Display

In the lines associated with comment #5.4 inside the CompositionTask class, an

else statement is defined. The else statement becomes part of the program flow

if the selection statement following comment #5.2 proves false. This occurs if the

348 Chapter 12 n Gauges, Dates, Calendars

Figure 12.9
As the counter progresses, successive lines appear and a number and the Gauge object display the
progress.

value of currentValue is no longer less than the maximum value assigned to the

Gauge object. In this case, you first disable the stopCmd event, which can be used at

any time to stop the progress of the counter. You then add the exitCmd. Following

that, you display ‘‘Done’’ in the label of the Gauge object. At this point, the

progress bars of the Gauge object are completely filled in, and the sonnet is fully

visible. Figure 12.10 shows the messages associated with the complete display of

the sonnet.

Sonnets

The second inner class, the Sonnets class, wraps a Vector object and provides a

way to access successive lines of the sonnet by calls to the getLine() method. In

the line preceding comment #6.1, you define a single attribute, sonnet29, which

The SonnetMaker Class 349

Figure 12.10
With the printing of the fourteenth line, the sonnet is fully displayed.

is of the Vector type. You then proceed to define the constructor, which involves

creating an instance of the Vector class and assigning it to the class attribute.

Additionally, you call the makeSonnet() method, which is responsible for adding

the lines of the sonnet to the Vector object. This method receives its definition in

the lines following comment #7, where the Vector::addElements() is called in a

somewhat laboriously repetitious way. With each call of the method, a character

string is assigned to the Vector object.

To retrieve the lines assigned to the Vector object, you implement the

getLine() method, which is defined in the lines trailing comment #6.2. This

method takes one argument of the int type, which designates the line to be

returned. To deliver the line, you first create a String object, sonnetLine.

After affirming the value of the line argument is less than the value returned

by the Vector::size() method and greater than zero, you then call the

Vector.elementAt() method, using the index value supplied by the line

argument, to retrieve a specific line of the sonnet. Since the Vector stores its

contents as Object references, it is necessary to convert each retrieved line

back into a String reference using the toString() method. The result is then

assigned to the sonnetLine object, the value of which is returned in the final

line of the method.

As a precautionary measure, an else clause is provided that assigns a character

value to the sonnetLine identifier in the event that no line has been retrieved. In

this way, the service the Sonnets class provides is slightly more robust than it

would be otherwise.

Stop and Exit Messages

In the lines associated with comment #4, the stopCmd and exitCmd messages are

processed. With respect to the stopCmd message, the first action is to call the

Timer::cancel() method, which destroys the Timer object. This action allows

you to prematurely stop the display of the sonnet, and a message to this effect is

then issued. You call the removeCommand() method to remove the Stop command

label from the display area. You also restore the exitCmd label, allowing the user

to exit the MIDlet. As a final action, you call the Gauge::setLabel() method to

change the text displayed in the label to ‘‘Reading Cancelled!’’ This is shown in

Figure 12.11.

350 Chapter 12 n Gauges, Dates, Calendars

Conclusion
In this chapter, you have investigated the DateField, Calendar, Date, and Gauge

classes. The DateField and Calendar classes are derived from the Item class;

exploration of these classes proves interesting in light of text-based game

applications. How this might be so is shown in part with the implementation of

the CalendarFortune and SonnetMaker classes, which allow you to explore chance

and sequence in rudimentary ways. Working with these two classes allows you to

further explore the possibilities the MIDP classes provide for developing text-

based games. As it is, however, exploration of these classes also moves your work

with the MIDP classes toward the Graphics and Canvas classes, the topics of the

next chapter. Use of these classes opens the door to many more scenarios for

developing games.

Conclusion 351

Figure 12.11
The message from the stopCmd object terminates the progress by destroying the Timer object.

This page intentionally left blank

Game Orientation

This page intentionally left blank

Canvas, Graphics, Thread

In this chapter you explore two of the standard GUI classes that allow you to

develop a wide variety of interfaces. These are Graphics and Canvas. Many of the

topics dealt with in this chapter anticipate the Game API classes. The virtue of not

immediately exploring the uses of the Game API classes is that the Canvas class

remains a reliable and frequently used class in the MIDP package set, and using

the Graphics, Image, Font, and other classes with the Canvas class is a convenient

way to learn. In this chapter, you concentrate on two shorter introductory classes

and then one longer class. The longer class makes use of a Thread object to control

the behavior of the objects displayed. It also makes use of methods for processing

events generated by keys. To process such events, it employs defined values

provided by the Canvas class. These provide valuable assets you can use to develop

action-oriented games for devices.

Canvas
The Canvas class is in some ways analogous to the Form class. You create an

instance of the Canvas class and then call the Display::setCurrent() method to

make it active. After you have activated the Canvas object, you then have access to

the primary method of the Canvas class: the paint()method. The paint()method

is defined so that it receives an argument of the Graphics type. Figure 13.1

provides a simplified overview of some of the activities you can perform using

Graphics objects.

355

Table 13.1 discusses several of the features of the Canvas class. Generally, it is

beneficial to study the Canvas class if you plan to use the GameCanvas class. The

Canvas class is the base class of the GameCanvas class.

CGExplorer
The CGExplorer class provides a rudimentary example of how to combine the

Canvas, Graphics, and Image classes to create an essential display. While Table 13.1

provides information on the Canvas class, Table 13.2 explores features of the

Graphics class. The CGCanvas class developed later in this chapter provides many

more opportunities for discussing in detail a number of the methods provided by

the two classes. The CGExplorer class provides only the most essential example of

how to implement a Canvas class. It is developed as an inner class, and the paint()

356 Chapter 13 n Canvas, Graphics, Thread

Figure 13.1
The Canvas and Graphics classes allow you to create and display a variety of items.

CGExplorer 357

Table 13.1 Canvas Class Methods

Method Description

int getGameAction (int) Takes a single argument of the int type. The key codes
are defined in the Canvas class. Such events are
considered standard to games. Game actions are identified
with the constants UP, DOWN, LEFT, RIGHT, and FIRE.

int getKeyCode(int) This retrieves the values assigned to the keys used for
game actions. It returns an integer value that you can then
use in a more generalized context. It takes as an argument
an integer argument identifying the game action to be
handled. Standard key codes can be integer values or
defined values, such as KEY_NUM0 or KEY_NUM1.

String getKeyName(int) This method returns a String reference and uses a
defined key code value or an integer value as its
argument. Takes an integer argument designating the
key that is to be identified.

boolean hasPointerEvents() This method, which is beyond the scope of the current
discussion, verifies whether the device or platform on
which you are working supports release and press events
produced by a pointer.

boolean hasPointerMotionEvents() Confirms that the platform you are developing on can
support events that involve dragging a pointer across the
screen. This is beyond the scope of the current discussion.

boolean hasRepeatEvents() Verifies that if a user holds down a given key, the action is
interpreted as a repeating event.

void hideNotify() If you remove a given Canvas object from the display, you
can use this event to issue a message to this effect.

boolean isDoubleBuffered() This method verifies that the Canvas object you are using
is double buffered, which means that graphical features
can be written into a buffer prior to being displayed.

protected void keyPressed(int) Handles the event that is initiated when a key is pressed.
This method takes an integer argument identifying the
code of the key that is pressed.

protected void keyReleased(int) Handles the event that is initiated when a key is pressed.
Takes an integer argument identifying the code of the key
that is released.

protected void keyRepeated(int) Called when a key is repeated (held down). Takes an
integer argument identifying the key that is repeatedly
pressed.

protected abstract void paint
(Graphics g)

Renders the Canvas. You must implement this method
when you specialize the Canvas class to create concrete
instances of it.

protected void pointerDragged
(int x, int y)

Applies to a pointer applied to the screen. Processes such
events when the pointer is dragged across the screen.

(Continued)

method is implemented so that it renders an Image object visible and then sup-

plements it with a few Graphics items. The CGExplorer class is located in the

Chapter13MIDlets project in the Chapter 13 source folder. It is also available in a

standalone version.

358 Chapter 13 n Canvas, Graphics, Thread

protected void pointerPressed
(int x, int y)

Invoked when the pointer is pressed.

protected void pointerReleased
(int x, int y)

Invoked when the pointer is released.

void repaint() A centrally important method of the Canvas class. It
works in conjunction with the paint() method. This
method calls the paint() method, giving you a way to
animate or in other ways change the appearance of the
objects in the display. The method causes the entire canvas
to be repainted.

void repaint(int x, int y, int, int) A centrally important method of the Canvas class. It calls
the paint() method. Its argument allows you to
designate the area of the Canvas object you want to
repaint. The first two arguments designate the coordinate
position in the canvas of the upper left corner of the area
to be repainted. The third argument establishes the
distance extending from the corner coordinate to the right
border of the area to be repainted. The final argument
designates the distance downward from the corner
coordinate to the bottom border of the area to be repainted.

void serviceRepaints() When you call the repaint() method, your request is
placed in a queue. This method provides a way to force the
repaint() action to be performed immediately.

void setFullScreenMode(boolean) A Canvas can be set to completely fill the display area or
to display in a normal mode. The normal mode features a
title and a bottom tray. Full-screen mode does not. It takes
an argument of the boolean type. If set to true, then
your display mode is full screen.

protected void showNotify() The method allows you to issue a message just prior to the
display of a Canvas object. It allows you to invoke actions
that you wish to take to prepare for the display of the new
Canvas object.

protected void sizeChanged
(int w, int h)

Allows you to issue a message if the size of the area of the
Canvas object on display is changed.

Graphics An essential complementary class to the Canvas class.
This class provides the data type for the argument of the
paint() method, which is the primary vehicle you use to
render images to the Canvas object.

Table 13.1 Continued

Method Description

/*
* Chapter 13 \ CGExplorer.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*;
import java.io.*;

// #1
public class CGExplorer extends MIDlet{

Canvas canvas;
Display display;
public CGExplorer(){

canvas = new SimpleCanvas();
display = Display.getDisplay(this);

}
// #1.1
public void startApp(){

display.setCurrent(canvas);
}

public void pauseApp(){
}

public void destroyApp(boolean unconditional){
}
//=======Inner Canvas Class =================================
// #2
public class SimpleCanvas extends Canvas{

Image image;
public void paint(Graphics g){

// #2.1
g.setColor(176, 224, 230);
g.fillRect(0, 0, getWidth(), getHeight());

//Upper left
g.setColor(250, 250, 210);
g.fillRect(getWidth()/2, 0, getWidth(), getHeight()/2);

//Lower right

g.fillRect(0, getHeight()/2, getWidth()/2, getHeight());

CGExplorer 359

g.setColor(0, 0, 0);
// #2.2
g.setColor(18, 18, 18);
g.drawString("Peace of mind.",

getWidth()/8,
getHeight()/4,
g.TOP | g.LEFT);

g.drawString("Mind the peace.",
5 * getWidth()/8,
3 * getHeight()/4,
g.TOP | g.LEFT);

// #2.3
g.setColor(255,0,0);
g.drawLine(0, this.getHeight()/2, this.getWidth(),

this.getHeight()/2);
g.drawLine(this.getWidth()/2, 0, this.getWidth()/2,

this.getHeight());
g.setColor(225, 25, 112);
// #2.4
try{

image = Image.createImage("/Paca.gif");
}catch(IOException ioe){

System.out.println(ioe.toString());
}

// #2.5
int xPos = this.getWidth()/2 - image.getWidth()/2;
int yPos = this.getHeight()/2 - image.getHeight()/2;
//In a rectangle that overlays the area of the image
g.setStrokeStyle(Graphics.SOLID);
g.drawArc(xPos,

yPos,
image.getWidth(),
image.getHeight(), 0, 360);

g.drawImage(image, this.getWidth()/2-image.getWidth()/2,
this.getHeight()/2-image.getHeight()/2,
0);

// #2.7
g.translate(0, 0);

360 Chapter 13 n Canvas, Graphics, Thread

g.drawRect(0, 0, 10, 10);
//Translate the intial (0,0) coordinate
g.translate(this.getWidth()/10, this.getHeight()/5);
g.drawRect(0, 0, 10, 10);

//Origin moved to the right, no further down
g.translate(2 * this.getWidth()/3, 0);
g.drawRect(0, 0, 10, 10);

}
}// end SimpleCanvas

//===
}// end outer class

Definition and Construction

In the lines following comment #1 in the CGExplorer class, you declare Canvas

and display attributes and then move on to define the constructor for the class.

The primary purpose of the constructor is to create an instance of the Canvas

class. In this case, you use the constructor for the SimpleCanvas class, which is an

inner class that extends the Canvas class. Since the SimpleCanvas class is a spe-

cialized version of the Canvas class, assigning an instance of it to the Canvas

attribute (canvas) creates no problem. Having created an instance of the Simple-

Canvas class, you then call the Display::getDisplay() method to obtain an

instance of the Display class to assign to the display attribute.

Following definition of the constructor for the CGExplorer class, you call the

startApp() method, as is shown in the lines following comment #1.1. To define

this method, you use the display attribute to call the setCurrent() method. As

an argument to the setCurrent() method, you furnish a reference to a Canvas

object. The setCurrent() method accepts an argument of the Displayable type,

which is a super class of the Canvas class. The Canvas object (canvas) at this point

becomes the primary medium of display for the MIDlet.

Specializing the Canvas Class

To use the Canvas class, it is necessary to specialize it. Specialization of the Canvas

class primarily involves overriding the paint() method. As is evident in the lines

following comment #2 of the CGExplorer class, to specialize the Canvas class in

this context, you create an inner class. As mentioned previously, the name of the

inner class is SimpleCanvas, and its definition includes one attribute, image, of the

Image type, and one method, paint().

CGExplorer 361

The data type of the one argument taken by the paint()method is Graphics. This

argument represents the Canvas object and allows you to use the fairly extensive

list of methods provided by the Graphics interface to render text, geometrical

forms, and pictures for display. As Table 13.2 makes clear, these three activities,

complemented by clipping and translating, constitute the primary services

offered by the interface of the Graphics class.

Color

As a demonstration of some of the interface features offered by the Graphics

class, consider that in the lines following comment #2.1, you call the Graphics:

:setColor() method. As Table 13.2 discusses, there are two overloaded versions

of this method. One accepts a trio of integer values to create an RGB value. For

example, the set consisting of 176, 224, 230 is used to set the background color for

the Graphics display area. This is a light blue color.

No t e

A useful Internet site to keep open or bookmarked when you are working with either hexadecimal
or 3-integer RBG values is as follows:

http://www.pitt.edu/~nisg/cis/web/cgi/rgb.html.

This site provides an extensive table, along with the names and samples of colors generated, and
you can easily copy and paste the information you require to your programs.

As Figure 13.2 illustrates, the color you apply to the Graphics object affects objects

in the flow of the program that follows, until you apply another color. The pattern

established is fairly straightforward. Apply a color, then call one or another of the

methods used to create textual or geometrical forms. They adopt the applied

color.

In the lines trailing comment #2.1, the first geometrical form to which color

is applied is a filled rectangle. The method that generates the rectangle is

fillRect(). Almost all of the Graphics methods work with the same basic set of

parameters that you use with the fillRect() method. With respect to position,

Figure 13.3 shows how geometrical and text forms generated by the Graphics

class are usually positioned relative to x and y-coordinates that establish the

upper left corner of the object to be displayed. The starting coordinate pair for

the display area is by default (0,0). This is the upper left position in the display

area. The values along the x- and y-axes then both increase one pixel at a time as

you move to the right or downward.

362 Chapter 13 n Canvas, Graphics, Thread

http://www.pitt.edu/~nisg/cis/web/cgi/rgb.html

It is almost always the case that a coordinate pair (x, y) establishes the location of

the upper left corner of a bounding box in which the form is drawn. The

bounding box extends to the right along the x dimension to the width you define.

It likewise extends downward along the y dimension to the height (or distance)

you define. The area of the bounding box extends downward from the starting

coordinates, not upward. One exception to the use of width and height

dimensions is the line. The coordinates used to generate a line do not define a

bounding box. Instead they establish only the beginning and end coordinate pairs

of the line.

Figure 13.3 also reviews the notion of an anchor. Generally, whether you render

text or a geometrical form, the item you render is positioned within a bounding

box. An anchor is a distinct argument (of the int type) that allows you to adjust

the location of the item you are rendering with relation to its position within the

bounding box. In Figure 13.3, for example, the item in the bounding box is

pulled down and to the right. The values you use to create anchors are defined by

the Graphics class. An example of a value that might be used is Graphics.BOTTOM |

Graphics.RIGHT. In this expression, two defined values are joined by a bit OR (|)

CGExplorer 363

Figure 13.2
The flow of the program carries forward the color definitions you apply.

operator to create an anchor value that pushes the item to which it is applied into

the lower right corner of the bounding box.

Rectangles

The lines trailing comment #2.1 involve three calls to the drawRect() method.

The drawRect() method takes four arguments. The first two set the coordinate

of the upper left corner of the rectangle. The third sets the width of the rectangle.

The final argument establishes the height of the rectangle. The first call to the

drawRect() method creates a rectangle that is the same height and width as

the display area. The next two calls create rectangles that are positioned in the

upper left and lower right of the display area, as shown in Figure 13.4. Creation of

the upper left rectangle involves obtaining the value returned by the getWidth()

method and dividing it by 2. This value is assigned to the x-coordinate that sets

the position of the upper left corner of the rectangle in the middle of the display at

the top. The value of 0 is then assigned to the y-coordinate. The distance given by

getWidth() is used to establish the left border. The distance given by getHeight()/

2 is used to establish the height. The approach used to create the rectangle in the

lower left follows the same logic:

0, getHeight()/2, getWidth()/2, getHeight()

364 Chapter 13 n Canvas, Graphics, Thread

Figure 13.3
Geometrical forms use similar parameters.

Strings

Trailing comment #2.2 in the CGExplorer class, a call is made to the drawString()

method of the Graphics class. As mentioned in the last section, the arguments to

the method are in many ways predictable. The first argument provides either a

reference to a String object or, in this case, a string constant. The second and

third arguments provide the coordinate pair used to position the upper left

corner of the bounding box that contains the text. The final argument is the

anchor, which in this case consists of a value created by joining Graphics:TOP and

Graphics:LEFT using an OR operator. This anchor argument pulls the text to the

upper left of the bounding box.

In the definition of the call to the drawString() and drawLine() methods (see

comment #2.3), calls are made to the getWidth() and getHeight()methods of the

Display class. For the first call to the drawString() method, the value returned by

the getWidth()method is divided by 8, rendering a value that represents an eighth

of the width of the display area. A similar approach is used to position the text with

relation to the height of the display. The value returned by getHeight() is divided

by 4. As is shown in Figure 13.5, the ‘‘P’’ in the string ‘‘Peace of mind’’ begins at a

position that is roughly one eighth of the way across from the left edge of the

CGExplorer 365

Figure 13.4
The methods of the Display class provide a way to define the rectangles for the background.

display area. Likewise, the top of the ‘‘P’’ is roughly a fourth of the distance down

from the top edge of the display area.

The technique used to position the two strings of text is also employed to draw

two lines that divide the display area into quadrants. Drawing a line requires two

coordinate pairs, and to calculate the value of x for one of the coordinate pairs,

for the vertical line, you divide the value furnished by getWidth() by 2. You then

set value of y to 0 to form the first coordinate pair (getWidth()/2, 0). The second

coordinate pair used to define the vertical line uses a similar approach

(getWidth()/2, getHeight()).

Rendering the Image and Drawing an Arc

The lines following comment #2.4 in the CGExplorer class trace activities that

have been reviewed in previous chapters, but it proves helpful to examine them

once again in the context provided by the Canvas (or SimpleCanvas) class. When

you call the Image::createImage() method, you load the contents of a GIF file

into the image attribute. To perform this action, you must wrap the create-

Image()method in a try block, because it is defined to throw an exception under

several conditions. In this instance, the general IOException type is used as the

argument to the catch block to handle the exceptions.

The image loaded depicts a paca, a rodent that is common in countries like

Paraguay. Prior to rendering the picture of the paca visible, you first calculate the

366 Chapter 13 n Canvas, Graphics, Thread

Figure 13.5
Using values retrieved from the Display eliminates the use of embedded constants.

values needed to position the picture in the center of the display. The two values

required for this are those assigned to the local identifiers, xPos and yPos.

As is evident in the lines following comment #2.5, to calculate values to assign to

the xPos and yPos identifiers, the getWidth() and getHeight() methods of the

Image class are used along with the methods of the same name from the Display

class. You divide the values the methods return by 2. You then subtract the Image

values from the Display values. The result is a coordinate pair (xPos, yPos) that

positions the upper left corner of the bounding box for the Image object so that the

picture appears roughly in the center of the display (refer back to Figure 13.5).

In a similar fashion, as the lines associated with comment #2.6 reveal, you draw

an oval around the picture of the paca by calling the drawArc() method of the

Graphics class. The first two arguments to the drawArc() method provide the x

and y values that designate the upper left corner of the bounding box for the arc.

These are supplied by the xPos and yPos values calculated previously to position

the picture of the paca. The next two arguments provide the width and height

of the picture of the paca, and to provide these, once again, you call the

getWidth() and getHeight() methods of the Image class.

The final two arguments of the drawArc() method designate the starting and end

degree values used to define the arc. An arc is a curved line that runs along the

circumference of a circle. The arc begins at any point on the circle, and as it

progresses around the circle, you can measure it in degrees. As Figure 13.6

illustrates, if you set the values of the drawArc()method at 0 and 90, the resulting

CGExplorer 367

Figure 13.6
The drawArc() method uses arguments that designate degree values.

curve projects upward and to the left. If you set the values at 180 and�90, the line

curves over to the right. The values you use to generate a given arc can be positive

or negative and of almost any integer magnitude. The values 0 and 720 in effect

draw a complete circle twice over.

Translation

In the lines following comment #2.7 in the CGExplorer class, three calls to the

translate()methodaremade.Generally, translation involves relocating theoriginof

the Canvasobjectwith respect to the display area. As is shown in the lines immediately

following comment #2.7, although you make three calls to the drawRect() method

using exactly the same arguments each time, the rectangles rendered appear in dif-

ferent locations. The changes of location are the work of the translate() method.

As Figure 13.7 shows, the first translation effects no change at all, for the argu-

ments to the translate() method are both zeros. The origin is originally set at

368 Chapter 13 n Canvas, Graphics, Thread

Figure 13.7
Translation allows you to change the coordinate values associated with the origin of the Canvas.

CGExplorer 369

Table 13.2 Graphics Class Methods

Method Description

Methods That Process Color

int getColor() Gets the currently set color.

void setColor(int) Changes the current drawing color. This method is overridden to
allow you to use a single value for the color.

void setColor(int, int, int) Changes the current drawing color. All three arguments are of the
int type. The three together provide the RGB (red, green, blue)
values used to define a color.

int getRedComponent() Gets the red component (0--255) of the current drawing color.

int getGreenComponent() Gets the green component (0--255) of the current drawing color.

int getBlueComponent() Gets the blue component (0--255) of the current drawing color.

void setGrayScale(int) Sets the current grayscale drawing color.

int getGrayScale() Gets the current grayscale drawing color.

Methods That Retrieve Coordinate Values of the Graphics Object

int getTranslateX() Returns the current translated x origin.

int getTranslateY() Returns the current translated y origin.

void translate (int x, int y) Translates the origin in the current graphics context.

Methods That Accommodate Clipping

void clipRect
(int, int, int, int)

Sets the current clipping rectangle. The first two arguments determine
the position of the upper left corner of the clipping. The third
argument is the distance to the right of the corner coordinate of the
right border of the clipping area. The last argument is the distance
from the corner coordinate to the bottom of the clipping area.

int getClipHeight() Returns the height defined for the current clipping rectangle.

int getClipWidth() Returns the width of the current clipping rectangle.

int getClipX() Returns the offset that has been assigned to the x-coordinate of
the clipping rectangle.

int getClipY() Returns the offset that has been assigned to the y-coordinate of
the clipping rectangle.

void setClip(int x, int y,
int, int)

Intersects the current clipping rectangle with the one passed to
the method. The first two arguments determine the position of
the upper left corner of the clipping. The third argument is the
distance to the right of the corner coordinate of the right border of
the clipping area. The last argument is the distance from the corner
coordinate to the bottom of the clipping area.

Methods for Drawing Geometrical Forms

void drawArc(int x, int y,
int, int, int, int)

Draws an arc, which can be any outline of a figure with curved or
rounded sides. The first two arguments establish the coordinates of
the upper left corner. The next two set the height and width of the
figure relative to these corner coordinates. The final two arguments

(Continued)

370 Chapter 13 n Canvas, Graphics, Thread

establish the starting and ending angles of the arc to be drawn. For
example, if you use the successive values 180 and 360, you get the
bottom half of a circle. If you use 0 and 180, you get the top half of
a circle.

void drawLine
(int, int, int, int)

Draws a line. The first two values set the coordinate position of one
end of the line. The second two values set the coordinate position
of the other end of the line.

void drawRect
(int, int, int, int)

Draws the outline of a rectangle. The first two arguments establish
the coordinates of the upper left corner of the rectangle. The third
argument is the width of the rectangle relative to the corner
coordinates. The fourth argument is distance to the bottom relative
to the corner coordinates.

void drawRoundRect(int, int,
int, int, int, int)

Draws the outline of a rectangle with rounded corners. The first
two arguments establish the coordinates of the upper left corner of
the rectangle. The third argument is the width of the rectangle
relative to the corner coordinates. The fourth argument is distance
to the bottom relative to the corner coordinates. The last two
arguments gauge the amount of curvature you want to apply to the
arcs that characterize the corners. The larger the numbers, the
more the curvature.

void fillArc(int x, int y,
int, int, int, int)

Draws a filled arc. The first two arguments establish the
coordinates of the upper left corner. The next two set the height
and width of the figure relative to these corner coordinates. The
final two arguments establish the starting and ending angles of the
arc to be drawn. If you use the successive values 180 and 360, you
get the filled bottom half of a circle. If you use 0 and 180, you get
the filled top half of a circle. The values 0 and 360 draw a complete
circle.

void fillRect(int x, int y,
int, int)

Draws a filled rectangle. The first two arguments establish the
coordinates of the upper left corner of the rectangle. The third
argument is the width of the rectangle relative to the corner
coordinates. The fourth argument is distance to the bottom relative
to the corner coordinates.

void fillRoundRect(int int,
int, int, int, int)

Draws a filled rectangle with rounded corners. The first two
arguments establish the coordinates of the upper left corner of the
rectangle. The third argument is the width of the rectangle relative
to the corner coordinates. The fourth argument is distance to the
bottom relative to the corner coordinates. The last two arguments
gauge the amount of curvature you want to apply to the arcs that
characterize the corners. The larger the numbers, the more the
curvature.

int getStrokeStyle() Gets the current stroke style.

void setStrokeStyle
(int style)

Sets the current stroke style.

Table 13.2 Continued

Method Description

CGExplorer 371

Methods for Working with String, Char, and Font Objects

void drawString(String,
int, int, int)

The first argument is of the String type and provides the text you
want to display. The second and third arguments set the upper
left corner of the rectangle that contains the text. The final
argument is the anchor. It shifts the relative position of the text
within the rectangle according to defined values provided by the
Graphics class. For example, the values Graphics.BOTTOM |
Graphics.RIGHT force the text to the bottom right of the
rectangle in which it is located.

void drawSubstring
(String, int, int,
int, int, int)

The first argument is of the String type and provides the text you
want to display. The second argument is the starting index (or
offset) within the String object you have provided. The third
argument determines how many characters you want to display
starting at the starting index. The fourth and fifth arguments set
the upper left corner of the rectangle that contains the text. The
final argument is the anchor. It shifts the relative position of the
text within the rectangle according to defined values provided by
the Graphics class. For example, the values Graphics.BOTTOM
| Graphics.RIGHT force the text to the bottom right of the
rectangle in which it is located.

void drawChar(char, int,
int, int)

The first argument is of the char type and provides the character
you want to display. The second and third arguments set the upper
left corner of the rectangle that contains the text. The final
argument is the anchor. It shifts the relative position of the text
within the rectangle according to defined values provided by the
Graphics class. For example, the values Graphics.BOTTOM |
Graphics.RIGHT force the text to the bottom right of the
rectangle that contains the text.

void drawChars(char[],
int, int, int, int, int)

The first argument is an array of the char type and provides the
text you want to display. The second argument is the starting
index (or offset) within the array you have provided. The third
argument determines how many characters you want to display
starting at the starting index. The fourth and fifth arguments set
the upper left corner of the rectangle that contains the text. The
final argument is the anchor. It shifts the relative position of the
text within the rectangle according to defined values provided by
the Graphics class. For example, the values Graphics.BOTTOM
| Graphics.RIGHT force the text to the bottom right of the
rectangle that contains the text.

Font getFont() Returns a reference to the font that has been assigned to the
Graphics object.

void setFont(Font) Allows you to set the current drawing font.

Table 13.2 Continued

Method Description

(Continued)

coordinate (0,0), so translating it to (0,0) brings no change. The second call to the

translate() method does effect a change, because in this case, you move the

y-coordinate origin down by a fifth of the height of the display area while moving

the x-coordinate over by a tenth of the width of the display area. As a result,

although you do not change the values assigned to the drawRect() method (0, 0,

10, 10), the rectangle you render is roughly a third of the way down in the display

area. It is also moved a bit further to the right.

A third call the to translate() method moves the origin once again, this time so

that the drawRect() method—again set with the same values as before—renders a

rectangle in the upper right quadrant of the display. Note that since the translate()

method is called last in the paint() method, the previously drawn graphical items

(the paca, the crossed lines, the colored quadrants, and the text) remain unaffected.

Extended Canvas Work
The GameStart and GSCanvas classes combine to form the rudimentary frame-

work of a game based on the standard MIDP classes alone. Prior to the intro-

duction of the MIDP Game API, this type of MIDlet characterized device games.

The picture has now changed, however. When developing an action-oriented

game, the best approach is to use the Game API, which receives extended

treatment in Chapters 14 and 15.

372 Chapter 13 n Canvas, Graphics, Thread

Methods for Working with the Canvas Area and Images

void drawImage(Image, int,
int, int)

Draws an image. The first argument is of the Image type. The
second and third arguments determine the upper left corner of the
image as it is drawn on the canvas. The last argument can be used
to align the image within the area set for drawing. This is the
anchor. The anchor Graphics.BOTTOM | Graphics.RIGHT
forces the image to the bottom right of the area set for the display
of the image.

void copyArea(int, int,
int, int, int, int, int)

Copies the contents of a rectangular area. The first four arguments
set the upper left corner of the area to be copied, along with its
width and height. The next two arguments establish the coordinates
to which the area is to be copied. This is upper left of the area. The
final argument is the anchor. An example of an anchor that forces
the image to the bottom right of the area set for the display of the
image is Graphics.BOTTOM | Graphics.RIGHT.

Table 13.2 Concluded

Method Description

In the current setting, use of the standard GUI components of the MIDP remains

an effective way to learn the basics. The current set of classes allows you to

explore event handling with respect to the Canvas class and thread imple-

mentation. In addition, you explore a few applications of collision detection.

These and other features of the MIDlet are brought into focus through events

generated by the keypad. Table 13.3 provides summary of the key actions the

MIDlet supports.

Figure 13.8 illustrates the GameStart MIDlet after you have invoked the 7 key to

change the drawing of the animal to that of an addax. The message to the left of

the addax is displayed as the result of a collision event. At the top of the display

area, note that the coordinate position of the drawing is shown on the left. On the

right, you see whether the animation key has been pressed. When the key has

been pressed to set animation on, the drawing of the animal moves auto-

matically. When it is off, it moves in small increments, and only with repeated

presses of the arrow keys.

Extended Canvas Work 373

Table 13.3 GSCanvas Actions

Key to Press Action

Keyboard 1 Changes the color in the arc (oval) behind the drawing of the animal that
appears in the middle of the display.

Keyboard 3 Toggles the action mode. When this is toggled on, clicking a direction key
using the SELECT button causes the image to move continuously in that
direction until it comes to the edge of the display area or you press
another direction key.

Keyboard 5 Changes the background color of the display using a random color value.

Keyboard 7 Toggles through a set of four drawings of animals.

Keyboard 9 Restores the background color to the starting color.

Arrows on the SELECT button The Up, Down, Right, and Left arrow keys cause the drawing of the
animal to move. They correspond to the Up, Down, Right, and Left arrows
on the SELECT button.

Upper left collision If you move the picture of the animal to the upper left of the display, a
collision event causes a message to be displayed.

Upper right collision If you move the picture of the animal to the upper right of the display, a
collision event causes a message to be displayed.

Center collision At the start of the application and whenever you move the drawing of
the animal to the center of the display, a message is displayed.

Lower border If you move the picture to the bottom of the display, although no
message is shown, your motion is stopped.

GameStart
The GameStart class provides a way to control how the user enters into the event

context that the GSCanvas class provides. It furnishes a splash screen, a game-over

screen, and commands for starting and stopping the application. When the user

presses the Start key, the GameStart class constructs an instance of the GSCanvas

class and moves the context of interaction into the event arena defined by

Canvas class methods. You can find the code for the GameStart and GSCanvas

classes in the Chapter 13 source folder. The classes are included in the NetBeans

Chapter13MIDlets project and also in the standalone folder. Here is the code for

the GameStart class. The GSCanvas class is presented further along in this chapter.

/*
* Chapter 13 \ GameStart.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.IOException;

374 Chapter 13 n Canvas, Graphics, Thread

Figure 13.8
Key presses invoke some of the events supported by the GameStart MIDlet, while other actions result
from internally generated events.

import java.util.*;
// #1
public class GameStart extends MIDlet implements CommandListener{

Form form;
Command exitCmd;
Command startCmd;
GSCanvas canvas;
Display display;
ImageItem splash;

public GameStart(){
form = new Form("Starter Canvas");
display = Display.getDisplay(this);

// #1.1
canvas = new GSCanvas(display, form);
exitCmd = new Command("Exit", Command.EXIT, 1);
startCmd = new Command("Start", Command.OK, 1);
form.append(new Spacer(50,100));

// #1.2
splash = new ImageItem("Canvas Explorations", null,

ImageItem.LAYOUT_CENTER,null);
try{

Image image = Image.createImage("/Alien-bird.gif");
splash.setImage(image);

}catch(IOException ioe){
System.out.println(ioe.toString());

}
form.append(splash);

form.addCommand(startCmd);
form.addCommand(exitCmd);
form.setCommandListener(this);

}
// #2
protected void startApp()

throws MIDletStateChangeException{
display.setCurrent(form);

}

protected void destroyApp(boolean unconditional)
throws MIDletStateChangeException{

}

GameStart 375

// #3
public void commandAction(Command cmd, Displayable dsp){

if(cmd == startCmd){
form.deleteAll();
canvas = new GSCanvas(display, form);
display.setCurrent(canvas);
System.out.println("startCmd");

}
if (cmd == exitCmd){

try{
destroyApp(true);
notifyDestroyed();

}catch(Exception e){
e.toString();

}
}

}
protected void pauseApp(){
}

}

Definition and Construction

In the lines associated with comment #1, you define a series of class attributes that

involve identifiers of the Form, Display, and Command types. You also declare an

attribute of the ImageItem type (splash) to accommodate a drawing used for the

splash screen. In addition, you declare an attribute of the GSCanvas type (canvas).

This attribute becomes a major feature in the life of the application.

In the lines immediately preceding comment #1.1, you create instances of the

Form and Display classes and then assign them to the appropriate class attributes.

In the lines following comment #1.1, you create an instance of the GSCanvas class.

The constructor for the GSCanvas requires two arguments, the first of the Display

type, and the second of the Form type. As the discussion of the GSCanvas reveals,

references to these two objects are needed to process the messages that allow the

user to exit the event context sustained by the GSCanvas class and re-enter the

event context sustained in the Form class.

After creating the Command objects needed to control entry to and exit from the

application, in the lines associated with comment #1.2 you create an instance of

the ImageItem class and assign it to the splash attribute. The file that provides the

376 Chapter 13 n Canvas, Graphics, Thread

drawing for the splash object is called Alien-bird.gif. The createImage()method

of the Image class is able to use such formats as GIF and PNG to generate an

image, and the result is assigned to the image attribute. Having created the Image

object, you then assign it to the splash attribute for display by calling the set-

Image() method. After you call the Form::append() method and use the splash

attribute as its argument, the splash screen can be brought to life.

The actual moment of appearance for the splash screen is occasioned by the lines

accompanying comment #2, where the startApp() method is defined. The one

active line of code in the method is a call to the Form::setCurrent() method,

which calls the Form object defined into the constructor into view. Figure 13.9

illustrates the result.

The Splash Screen

The splash screen provides only a momentary pausing place. In the lines fol-

lowing comment #3 of the GameStart class, you process the startCmd and exitCmd

messages. The startCmd message calls the deleteAll() method of the Form class,

which clears command definitions made so far. On the next line, the constructor

GameStart 377

Figure 13.9
The Alien-bird.gif file provides a drawing for the splash screen.

of the GSCanvas class is called. Provided with arguments of the Display and Form

types, it serves to create a GSCanvas reference that is assigned to the canvas

attribute.

GSCanvas
The GSCanvas class provides a large variety of event-processing capabilities, in

addition to other features, such as a Thread object and double buffering of images.

To use the GSCanvas class, you require an entrance point; this is provided by the

GameStart class, which has been discussed already. The code for the GSCanvas class

is located in the Chapter 13 source folder, in the NetBeans Chapter13MIDlets

project. It is also available in the standalone folder. Here is the code for the class.

/*
* Chapter 13 \ GSCanvas.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.*;

// #1
public class GSCanvas extends Canvas implements Runnable, CommandListener{

// #1.1
private Random random;
private Graphics buffer;
private Image movingImage;
private Image bufferImage;
private int imageID;
private String imageNames[] = new String[4];
private final int SPEED = 4;
private int imageXPos;
private int imageYPos;
private int positionChange;
private int speedOfMove;
private int color;
private int imageColor;
private boolean moveFlag;
private String option3;
private Command exitCmd;
private Display display;

378 Chapter 13 n Canvas, Graphics, Thread

private Thread thread;
private Form form;
private final int CDIV=3;

public GSCanvas(Display start, Form stform){
// #2

form = stform;
display = start;
imageXPos = getWidth()/2;
imageYPos = getHeight()/2;
random = new Random(System.currentTimeMillis());
speedOfMove = SPEED;
imageID = 0;
moveFlag = false;
option3 = new String("Off");
// #2.1 Load the images
setImages();
// #2.2
color = makeColor(0);
imageColor = makeColor(1);

makeImage(getImage(0));

// #2.3
exitCmd = new Command("Exit", Command.EXIT, 1);
this.addCommand(exitCmd);
this.setCommandListener(this);

// #2.4
thread = new Thread(this, "Game Thread");
thread.start();

}

// #3
private void setImages(){

imageNames[0]= "/Paca.gif";
imageNames[1]= "/WhiteRhino.gif";
imageNames[2]= "/Zebra.gif";
imageNames[3]= "/Addax.gif";

}

GSCanvas 379

// #3.1
private String getImage(int iNum){

String gImage;
if(iNum < imageNames.length){

gImage = imageNames[iNum];
}else{

gImage = imageNames[0];
}
return gImage;

}

// #4
public void makeImage(String imageName){

bufferImage = null;
movingImage = null;
try{

if(isDoubleBuffered() == false){
bufferImage = Image.createImage(getWidth(),

getHeight());
buffer = bufferImage.getGraphics();

}
movingImage = Image.createImage(imageName);

}catch(Exception e){
}

}//end makeImage()

// #5
public void run(){

while(true){
int delayOfLoop = 1000 / 20;
long loopStartTime = System.currentTimeMillis();
runGame();
long loopEndTime = System.currentTimeMillis();
int loopTime = (int)(loopEndTime - loopStartTime);
if(loopTime < delayOfLoop){

try{
thread.sleep(delayOfLoop - loopTime);

}catch(Exception e){
e.toString();

}
}

}
}// end run()

380 Chapter 13 n Canvas, Graphics, Thread

// #6
public void runGame(){

checkBoundries();
switch(positionChange){

case LEFT:
imageXPos -= speedOfMove;

break;
case RIGHT:

imageXPos += speedOfMove;
break;
case UP:

imageYPos -= speedOfMove;
break;
case DOWN:

imageYPos += speedOfMove;
break;

}
repaint();
serviceRepaints();

}// end tick()

// #6.1
void checkBoundries(){

if(imageXPos < 20){
imageXPos = 21;

}
if(imageXPos > this.getWidth()){

imageXPos = this.getWidth()-1;
}
if(imageYPos < 40){

imageYPos = 41;
}
if(imageYPos > this.getHeight()){

imageYPos = this.getHeight() -1;
}

}

// #7 Repaint the Canvas object
protected void paint(Graphics g){

Graphics buffContext = g;
if(!isDoubleBuffered())
{

g = buffer;

GSCanvas 381

}
g.setColor(color);

g.fillRect(0, 0, this.getWidth(), this.getHeight());

g.setColor(imageColor);
// #7.1
g.drawArc(imageXPos - movingImage.getWidth()/2,

imageYPos - movingImage.getHeight()/2,
movingImage.getWidth(),
movingImage.getHeight(),180, 360);

g.fillArc(imageXPos - movingImage.getWidth()/2,
imageYPos - movingImage.getHeight()/2,
movingImage.getWidth(),
movingImage.getHeight(),180, 360);

// #7.2
g.drawImage(movingImage, imageXPos, imageYPos,

Graphics.VCENTER | Graphics.HCENTER);

if(!isDoubleBuffered()) {
buffContext.drawImage(bufferImage, 0, 0,

Graphics.TOP | Graphics.LEFT);
}

// #7.3 Draw Divisions
drawDivisons(g);

// #7.4
showPosition(g);

// #7.5
detectCollision(g);

}// end paint()

// 7.6
void drawDivisons(Graphics g){

g.setColor(0, 0, 255);
g.setStrokeStyle(Graphics.DOTTED);
g.drawLine(0, this.getHeight()/CDIV, this.getWidth(),

this.getHeight()/CDIV);

382 Chapter 13 n Canvas, Graphics, Thread

g.drawLine(0, 2 * this.getHeight()/CDIV, 2 * this.getWidth(),
2 * this.getHeight()/CDIV);

g.drawLine(this.getWidth()/CDIV, 0, this.getWidth()/CDIV,
this.getHeight());

g.drawLine(2 * this.getWidth()/CDIV, 0,
2 * this.getWidth()/CDIV,
2 * this.getHeight());

}

// #7.7
void showPosition(Graphics g){

g.setColor(0xf0fff0) ;
String xCoord = String.valueOf(imageXPos);
String yCoord = String.valueOf(imageYPos);
g.setColor(0xf8f8ff) ;
g.fillRect(0, 0, this.getWidth(), 20);
g.setColor(0x0f0f0f) ;
g.drawString("Position: x:" + xCoord + "\t y: "

+ yCoord , 0, 0, 0);
g.drawString("Option 3: " +

option3, 2 * this.getWidth()/CDIV, 0, 0);
}// end showPosition()

// #7.8
void detectCollision(Graphics g){

String message = new String();
if(imageXPos < this.getWidth()/CDIV &&

imageYPos < this.getHeight()/CDIV){
message = "Top Left.";

}
if(imageXPos > 2 * this.getWidth()/CDIV &&

imageYPos < this.getHeight()/CDIV){
message = "Top Right.";

}
if(imageXPos < this.getWidth()/CDIV &&

imageYPos > 2 * this.getHeight()/CDIV){
message = "Lower Left.";

}
if(imageXPos > 2 * this.getWidth()/CDIV &&

imageYPos > 2 * this.getHeight()/CDIV){
message = "Lower Right.";

GSCanvas 383

}
if((imageXPos > this.getWidth()/CDIV &&

imageXPos < 2 * this.getWidth()/CDIV)
&&
(imageYPos > this.getHeight()/CDIV &&

imageYPos < 2 * this.getHeight()/CDIV)
){

message = "In the center.";
}
g.drawString(message, 0, this.getHeight()/2, 0);

}//

// #8
protected void keyPressed(int keyCode) {

if (keyCode > 0 && keyCode != 5) {
System.out.println("keyPressed "
+ ((char)keyCode));

// #8.1 ====================================
switch((char)keyCode){

case ’1’:
imageColor = makeColor(1);

break;
case ’3’:

if(moveFlag == false){
moveFlag = true;
option3 = "On";

}else{
moveFlag = false;
option3 = "Off";

}
break;
case ’5’:

color = makeColor(1);
break;
case ’7’:

//Change image
imageID++;
if(imageID > 3){

imageID = 0;
}
System.out.println("Inside 7"

+ ((char)keyCode));

384 Chapter 13 n Canvas, Graphics, Thread

makeImage(getImage(imageID));
break;
case ’9’:

//Reset background
color = makeColor(0);

break;

}// end switch
//===
}else{

System.out.println("keyPressed action "
+ getGameAction(keyCode));

// #8.2 =====================================
int gameAction = getGameAction(keyCode);

switch(gameAction){
case LEFT:

positionChange = LEFT;
break;
case RIGHT:

positionChange = RIGHT;
break;
case UP:

positionChange = UP;
break;

case DOWN:
positionChange = DOWN;

break;
}//end switch
//===

}
}//end keyPressed

// #9
protected void keyReleased(int keyCode)
{

//Continuous movement
if(moveFlag == false){

positionChange = 0;
}

}// end keyReleased

// #10
private int makeColor(int clr){

GSCanvas 385

int colorVal = 0;
if (clr == 0){

colorVal = 0xf0fff0 ;
}
if(clr == 1){

colorVal = random.nextInt()&0xFFFFFF;
}
return colorVal;

}// end makeColor()

// #11
public void commandAction(Command c, Displayable s){

display.setCurrent(form);
form.append("Game over.");

}
}// end class

GSCanvas Definition and Construction
When the user presses the button corresponding to the Start command in the Form

object the GameStart MIDlet provides, an instance of the GSCanvas class is created

and the user enters into the event context sustained by the GSCanvas event handlers.

To make this possible, immediately following comment #1 in the signature line of

the GSCanvas class, you extend the Canvas class and implement the Runnable and

CommandListener interfaces. The Runnable interface makes it necessary to imple-

ment the run() method. The GSCanvas class supports an instance of the Thread

class, and when the Thread object is used to call the start() method, the run()

method is also called. In addition to the use of a Thread, this implementation of the

Canvas class requires you to implement the paint() method, and the Command-

Listener interface requires to you implement the commandAction() method.

A fairly extensive list of attributes is defined in the lines associated with comment

#1.1 in the GSCanvas class. The types of the attributes include Random, Graphics,

Display, Form, and Image, among others. The Form and Image attributes accom-

modate references passed from the GameStart class through the GSCanvas

constructor. The Random attribute allows you to generate colors for the back-

ground and the oval area that appears behind the drawings of the animals. You

also create an array of the String type, which is used to store the names of files that

provide drawings of animals. A number of attributes of the int type are used to

process coordinate values and key events. One attribute of the int type is qualified

386 Chapter 13 n Canvas, Graphics, Thread

with the final keyword, making it a constant. It is assigned a value of 4, which

governs the speed of animation.

The constructor for the GSCanvas class is defined in the lines following comment

#2. First the values obtained from the argument list of the constructor are

assigned to the form and display attributes. The references to the Form and

Display attributes of the GameStart class make it possible to return to the starter

Form object and exit the MIDlet from there.

After attending to the Form and Display objects, you call the getWidth() and

getHeight() methods of the Display class to capture the dimensions of the

display. You divide the returned values of the methods by 2 and assign the results

to the imageXPos and imageYPos attributes. Together, these allow you to position

graphical objects in the center of the display.

You then create an instance of the Random class. As a seed time to the Random

constructor, you make use of the System::currentTimeMillis() method, which

returns a fairly substantial number representing the millisecond value of the

current date. You then initialize a few of the attributes that process the events of

the GSCanvas class and call a number of GSCanvas methods that are discussed in

subsequent sections of this chapter.

Beyond the calls to the methods defined in the GSCanvas class, you close out the

work in the constructor by creating an instance of the Command class and assigning

it to the exitCmd attribute. This is the Exit command. You call the addCommand()

and setCommandListener() methods to initiate event handling for the GSCanvas

class. Note that the commandAction() method, which handles the message issued

by the Exit command, is implemented in the lines trailing comment #11. There,

you use the reference to the Display object passed to the constructor of the

GSCanvas class to invoke the setCurrent() method. This method takes as its

argument the Form reference passed to the constructor of the GSCanvas. Having

exited the GSCanvas context, you are in effect back where you started and call the

append() method to display the message ‘‘Game over.’’

Files, Images, and Colors

Four methods called in the context of the GSCanvas constructor are setImages(),

makeImage(), getImage(), and makeColor(). The setImages()method is defined in

the lines associated with comment #3, where the imageNames array is assigned the

names of four GIF files that provide illustrations of animals. Use of the GIF file type

GSCanvas Definition and Construction 387

388 Chapter 13 n Canvas, Graphics, Thread

provides a contrast to approaches shown in this book involving PNG files. When

the files you use are to be displayed without being changed, then the GIF format

presents no difficulties. Where rendering of the graphics requires clipping or

transformation, it is in some respects preferable to use the PNG file type.

The getImage() method is defined in the lines following comment #3.1. The

primary responsibility of this method is to extract file names from the imageNames

array. This method takes one argument of the int type. It checks to ensure that

the value of the argument is less than the length of the imageNames array. If this

proves true, it returns a file name corresponding to the index identified. If the

number is outside the range, then it always returns the file name that corresponds

to index 0, in this case paca.gif.

Called in the constructor in the line following comment #2.2, the makeColor()

method is defined in the lines trailing comment #10. This method is responsible

for generating either a fixed or a random color value. It takes an argument of the

int type and also returns a value of the int type. The argument directs the

method to perform one of two actions. If the argument submitted to the method

is 0, then the method assigns the hexadecimal value 0xF0FFF0 to the colorVal

attribute. This color is used for the background when the GSCanvas object is first

constructed. If the value submitted as an argument to the method is 1, then the

random attribute is used to call the nextInt() method to generate a random

integer value. The value returned is joined using the AND bit operator with the

value of 0xffffff, which results in a background color.

Perhaps the most complex method of those initially called in the GSCanvas

constructor is the makeImages() method. This method takes an argument of the

String type. The argument names a file suitable for creating an Image object. As

the line associated with comment #2.2 shows, the getImage() method furnishes

the value required as an argument by the makeImages() method.

The makeImage()method is defined in the lines following comment #4. Its primary

responsibility is to create a double buffer if one is needed or can be used. To

implement the method, you first assign null values to the bufferImage and

movingImage attributes. You then set up a selection statement to determine whether

the device works with double buffers. To accomplish this, you call the isDouble-

Buffered() method. If the device does not provide double buffering, then it is

necessary to create a buffer for the image. If this is not needed, then the Image

object (movingImage) is created without a buffer using the createImage() method,

and nothing more is needed. As has been noted elsewhere, a try block must wrap

the call to the createImage() method.

The Runnable Interface and the Thread

Implementation of the Runnable interface requires that you define the run()

method. Thismethod is invokedwhen the Thread::start()method is called. In the

GSCanvas constructor, a new Thread object is created in the lines immediately

following comment #2.4. As Table 13.4 indicates, the constructor allows you to

name the thread (‘‘Game Thread’’ in this case) and to associate the Thread object

with the GSCanvas object using the this keyword. Since the GSCanvas class imple-

ments the Runnable interface, you implement the run()method when you define it.

The this keyword links the Thread object to the run() method of a Runnable class.

As Figure 13.10 illustrates, when you call the start() method of the Thread class

within the scope of a class that implements the Runnable interface, the run()

method is invoked. In a situation in which you implement a game loop, you can

do so in the scope of the run()method. As the lines following comment #5 show,

the run() method contains a while block set to run infinitely.

The while block is more than an infinite loop, however. Within it is embedded a

selection statement that uses two measures of the system time to determine

whether to call the Thread::sleep()method. The decision of whether to delay or

force the action of the while loop to sleep is based on the value of a local

GSCanvas Definition and Construction 389

Figure 13.10
The run() method allows you to implement the game loop.

identifier, delayOfLoop. This identifier establishes the amount of time you want

to allow for each iteration of the loop. Imagine, for example, that you are working

with a film projector. Such a value determines the number of frames you are able

to see each second. At around 15 frames per second, the human eye can no longer

detect individual frames, so the world of animation comes to reality.

Still, it is important to recognize that the delayOfLoop identifier establishes an

amount of time that is a minimum value, not a maximum value. In other words,

the loop must run at least as slowly as the time set by the delayOfLoop identifier

(1000/15—15 times each second). To regulate the rate at which the loop is allowed

to repeat, you create two local identifiers, loopStartTime and loopEndTime. The

first of these allows you to capture the time at the start of each loop. The second

allows you to capture the time at the end of each loop. To capture the time, you use

390 Chapter 13 n Canvas, Graphics, Thread

Table 13.4 Thread Methods and Values

Method/Value Discussion

Thread() The default Thread constructor.

Thread(Runnable) Creates a thread that is associated with a specific object.

Thread(Runnable, String) This constructor takes two arguments. The first is an object that
implements the Runnable interface. The second is a String reference
that names the thread.

Thread(String) Creates a thread with a designated name.

void interrupt() Interrupts the thread.

boolean isAlive() Returns a value of the boolean type that indicates whether the thread
is alive.

void run() If the class you are working with implements the Runnable interface,
then you must implement this method. It is called automatically when
the Thread object calls the start() method.

static void sleep(long) This argument takes an argument of the long type that designates how
long you want the thread to pause. When sleeping, the thread ceases to
be active.

void start() Activates a thread and, in turn, calls the run() method associated with
a class in which you have implemented the Runnable interface.

String toString() Retrieves the name of a thread, if you have assigned one.

static void yield() Temporarily pauses the thread that calls it and allows other threads to
execute.

setPriority(int) Allows you to set a priority for a thread. See the following defined
values.

MAX_PRIORITY A value of the int type. The maximum priority you can assign to a thread.

MIN_PRIORITY A value of the int type. The minimum priority you can assign to a thread.

NORM_PRIORITY A value of the int type. The default priority assigned to a thread.

calls to the System::currentTimeMillis() method to set the values of the two

identifiers.

After you assign a time value to loopStartTime, you invoke all the action the

game needs to perform during the iteration of the loop. This is accomplished

with a call to a single method, runGame(). The runGame()method in turn calls the

repaint() method, and the repaint() method calls the paint() method, which

renders visible the graphical features of the game. The calls to the runGame(),

repaint(), and paint() methods (in addition to several others used for pro-

cessing events) require a certain amount of time. By subtracting the value

assigned to the loopStartTime identifier from the value assigned to the loop-

EndTime identifier, you arrive at a suitable value to assign to loopTime. This

identifier is then evaluated to determine whether enough time has elapsed to

justify allowing the next cycle of the game to execute.

If more time is needed, you use the Thread object to call the sleep() method. To

the sleep()method you supply a value that delays the loop long enough to make

it preserve the minimum rate of change (or frame rate) established by the value

assigned to the delayOfLoop identifier.

Key Values and Events

As a part of the run() method, you make a call to the runGame() method.

Implemented in the lines following comment #6, this method performs two basic

actions. As Figure 13.11 illustrates, since the Image object can be moved around

the display area, the first action is to call the checkBoundries() method, which

audits the position of the Image object to determine when it has reached the

boundary of the display area. (The checkBoundries() method is defined in the

lines associated with comment #6.1.) The second action of the runGame()

method is to audit the current value assigned to the positionChange attribute to

determine which event has been issued by the SELECT button. The value of the

positionChange attribute is set in two or three places in the lines of the class. The

values assigned to it can be either 0 or one of the four defined values for direction

provided by the Canvas class: UP, DOWN, LEFT, and RIGHT. (See the sidebar ‘‘Using

Key Codes’’ for more information on key codes.)

A value is assigned to the positionChange attribute when you press one of the

direction arrows on the SELECT button. As is explained later, having pressed the

button, the direction value is stored in the positionChange attribute. One of two

actions can then occur, depending on the value assigned to the positionChange

GSCanvas Definition and Construction 391

392 Chapter 13 n Canvas, Graphics, Thread

Figure 13.11
The x and y values that determine the position of the Image object are changed with each click of the
SELECT-button arrow keys.

Figure 13.12
Motion can be set to be continuous.

attribute by the key actions. If it is allowed to retain the value of the direction

pressed (one of the SELECT arrows, for example), then the affected object moves

continuously. If the value of positionChanged is cancelled out (by the release of

the key, for example), then the object does not move continuously. Figure 13.12

illustrates this activity.

U s i n g K e y C o d e s

In the GSCanvas class, event processing from keys is managed using character values. The
standard approach is to use the constant values provided by the key codes. These values are
defined in the Canvas class. Table 13.5 provides a selection of these defined values. To process
the game action key codes, you call the getGameAction() method. To process the default keys,
you can, among other things, call the keyPressed() or keyReleased() methods. In the
GSCanvas class, having been retrieved by the keyPressed() method, the key values are cast to
the char type before being processed. You can also simply process the integer value.

GSCanvas Definition and Construction 393

Table 13.5 Key Event Codes

Key Event Description

Default Keys

KEY_NUM0 Numerical keypad 0

KEY_NUM1 Numerical keypad 1

KEY_NUM2 Numerical keypad 2

KEY_NUM3 Numerical keypad 3

KEY_NUM4 Numerical keypad 4

KEY_NUM5 Numerical keypad 5

KEY_NUM6 Numerical keypad 6

KEY_NUM7 Numerical keypad 7

KEY_NUM8 Numerical keypad 8

KEY_NUM9 Numerical keypad 9

KEY_POUND #

KEY_STAR *

Keys Associated with Game Actions

UP Up arrow

DOWN Down arrow

LEFT Left arrow

RIGHT Right arrow

FIRE A fire button

GAME_A Game function A

GAME_B Game function B

GAME_C Game function C

GAME_D Game function D

Different Messages and Keys

In the lines associated with comment #8, the keyPressed() method of the Canvas

class is implemented. The implementation of this method in this context

involves processing two types of values. One type relates to the SELECT key. The

other type relates to the keypad numbers. To process the values, you set up an if

selection statement that tests the raw integer values passed through the keyCode

identifier to determine which type they correspond to. If the message is from the

keyboard, then you cast it to a char value and test it against a char constant (such

as ‘‘1’’). The specific char values you test are 1, 3, 5, 7, and 9. Table 13.5 provides a

summary of the actions associated with each selection.

On the other hand, if the value the keyPressed() method tests is issued by the

SELECT button, then as the lines following comment #8.2 reveal, you call the

getGameAction() method to filter the message so that it can be recognized as a

game action message. Such actions can be tested against the defined game action

values of LEFT, RIGHT, UP, and DOWN. If any one of these values is generated, then its

value is assigned to the positionChange attribute, which, as noted before, is used

in the runGame() method to determine the direction in which the central picture

(or sprite) in the game moves.

The work of determining how to handle specific events generated by keys

begins at comment #8.1 with the processing of the case for 1. Here, you call the

makeColor()method and provide it with an argument of 1. This argument causes

the method to generate random color values that are assigned to the imageColor

attribute. This attribute controls the color of the arc (oval) that lies behind the

picture of the animal. Processing of the case for 3 is along the same lines as the

case for 1 and resembles processing for the case for 5, with the exception that

when the randomly generated color attribute is applied, the general background

of the display area is affected.

One other call is made to the makeColor()method, in association with the case for 9.

In this instance, the argument furnished to the method is 0. As mentioned pre-

viously, an argument of 0 to the makeColor()method causes the method to return a

default color value. Assigned to the color attribute, this allows the user to reset the

background to a color that makes the picture in the center to stand out readily.

The case for 7 makes use of the imageID attribute, incrementing it with each press

of the 7 key through a range extending from 0 to 3. When the maximum is

reached, the value of imageID is reset to 0. As the range is traversed, the values are

fed to the getImage() method, and the returned value of the getImage() method

394 Chapter 13 n Canvas, Graphics, Thread

is then used as an argument to the makeImage() method. The result is that with

each press of the 7 key, a different picture of an animal is displayed.

Processing the event generated by the 3 key involves turning on and off a switch

that allows the picture to continue moving after the user presses the SWITCH

button. The flow of this activity is illustrated by Figure 13.12. In effect, if the user

presses the 3 key the value of the moveFlag attribute is changed. When this flag is

set to false (off), then as is evident in the lines associated with comment #9, the

positionChange attribute is set to 0 with each release of a key.

When the positionChange attribute is set to 0, as the lines associated with comment

#6 show, the picture can be moved only with successive presses of the SELECT

button.When it is not set to 0, this is not the case. The loop continues to increment

the value associated with the last SELECT event. (Again, see Figure 13.12.)

Painting and Repainting

In addition to allowing the user to change the position of the Image object in the

display, the runGame()method calls two central methods of the Graphics class. The

first is the repaint() method. The repaint() method calls the paint() method.

The paint() method causes the Canvas area to be refreshed, erasing—unless told

otherwise—all that has been painted previously. It is the action of the paint()

method that allows you to change the appearance of the Canvas and create ani-

mated applications. In most cases, such changes involve things like pictures

(images) selected for display, painting the text, or painting the geometrical forms.

Recall that since the GSCanvas class extends the Canvas class, it must implement

the paint() method. Calling the repaint() method has the effect of requesting

the Graphics object to schedule invocation of the paint() method. In other

words, not every call of the repaint() method is necessarily immediately pro-

cessed. To force the paint() method to execute, you also call the service-

Repaints() method, which clears the queue of requested paint events.

As Figure 13.13 illustrates, the run(), repaint(), and paint() methods (with

some help from the serviceRepaints() method) constitute the central set of

methods used for rendering the visual effects you see displayed on the Canvas

object. The Thread and Runnable classes support the run() method, and the

Canvas class provides the paint(), repaint(), and serviceRepaints() methods.

You associate the Thread object with the Canvas class by using the this keyword

in the constructor for the Thread object (as mentioned previously). You can use

GSCanvas Definition and Construction 395

an intermediary method within the run()method, such as runGame(), to remove

clutter from the run() method.

The paint() method of the GSCanvas class is implemented in the lines associated

with comment #7. As is evident in the lines associated with comments #7.1 and

#7.2, most of the calls to methods made in the scope of the paint() method

involve the use of the Graphics object or values that are defined through either

keyboard actions or as default settings. The work of the methods associated with

the Graphics class has been covered earlier in this chapter. The only exception to

what has been discussed previously is the use of the selection statements to

confirm the buffer status of the display area. If the display area is not double

buffered, then a buffer is provided.

Boundaries, Coordinates, and Collisions

In the lines trailing comment #7.3 you call the drawDivisons() method, which is

implemented in the lines associated with comment #7.6. The definition of this

method begins with a call to the setColor() method, which provides the color

used for the division lines. To accommodate the setColor() and other Graphics

396 Chapter 13 n Canvas, Graphics, Thread

Figure 13.13
You can call the paint() method from the run() method to constantly refresh the Canvas display area.

methods, the drawDivisons() method must accept an argument of the Graphics

type. (This approach to refactoring the activities associated with the paint()

method is also used with the other twomethods discussed in the current section.)

After setting the color, you then call the setStrokeStyle() method to designate,

using the Graphics.DOTTED value, that the lines drawn are to be dotted. After that,

with four calls to the drawLine()method of the Graphics class, you draw the lines

that divide the display area into six rectangles. To draw the lines, the CDIV

attribute is used to set the distances between and lengths of the lines. This value

has been set to 3. The getWidth() and getHeight() methods of the Display class

are used to obtain the information about the display needed to position the lines.

In the lines associated with comment #7.4 in the GSCanvas class, you call the

showPosition() method. This method is implemented in the lines associated

with comment #7.7. It provides the coordinate position associated with the

drawing of the animal that is painted to the display area. It also furnishes

information on the drawing status. To implement the method, you first set the

background color using the setColor() method. You then obtain the coordinate

values. The coordinate values are provided by the imageXPos and imageYPos

attributes. Calls to the String::valueOf() method are needed to convert the int

values obtained from these attributes into String references that can be used as

arguments to the drawString()method. You call the drawString()method twice,

first to show the positions of the two coordinates, then to show whether the

option toggled by the 3 key is on or off.

At comment #7.5 within the paint() method, you call the detectCollision()

method. This method is defined in the lines that follow comment #7.8. The work

of this method involves using five selection statements to evaluate whether the

coordinate values supplied by the imageXPos and imageYPos attributes fall into

certain regions of the display. To understand how the regions are defined, as

shown in Figure 13.14, it can be helpful to picture the area of the display in terms

given by the values retuned by the getWidth() and getHeight() methods and the

value assigned to the CDIV attribute.

To set the detection values that define the upper left area, for example, it is

necessary to create a compounded AND statement that takes the following form:

if(imageXPos < this.getWidth()/CDIV &&
imageYPos < this.getHeight()/CDIV){
message = "Top Left.";

}

GSCanvas Definition and Construction 397

The position defined is less than one third (CDIV is defined as 3) from the left

edge and less than one third from the top. Other areas of detection require more

extensive definitions to account for multiple division, but the strategy is the

same.

Conclusion
In this chapter, you have explored the Canvas and Graphics classes, along with the

Thread class, and implemented some of the functionality that often is found in

games. The explorations in this chapter involve only the standard GUI classes,

not those in the Game API. While implementing the game using the standard

GUI classes tends to be cumbersome, it remains that working with them prepares

you to more fully explore the features of the Game API. In many respects, this is

the best approach because the features the Game API classes inherit are often

those that have been initially provided in the interface of such classes as Canvas.

Given the explorations offered in this chapter, you can proceed with confidence

into work with the Game API.

398 Chapter 13 n Canvas, Graphics, Thread

Figure 13.14
The active areas mapped for collision detection are identified using standard divisions.

The Game API

In this chapter you explore a few of the features of the MIDP Game API, which

provides a number of components that allow you to readily implement games

with relatively few lines of code. The Game API provides you with the Layer,

LayerManager, GameCanvas, TiledLayer, and Sprite classes. The FacePlay class

allows you to explore a few features of the GameCanvas, Sprite, and TiledLayer

classes. The features you consider include messaging capabilities, frame sequen-

ces, transformation, layering, and painting, among others. Additional services

extend to collision detection among Sprites and the ability to flush or clear

specific regions of the GameCanvas object. Generally, the Game API offers an

excellent set of tools for crafting games in a straightforward, convenient way.

While the standard GUI classes remain an essential part of the work, you soon see

that use of the Game API offers many useful extensions that tremendously

augment your game efforts to develop games involving graphically oriented,

rather than textually oriented, activities.

The Game API
Figure 14.1 provides a review of the class diagram for the classes that constitute

the Game API and a few of the classes in the LCDUI package. The most

important relationship between the two groups is that between the Canvas and

GameCanvas classes. The GameCanvas class, like the Canvas and Form classes, provides

399

a convenient context in which to implement the display features of a game.

Among other things, it readily accommodates objects of the Sprite and Tiled-

Layer classes, both of which are derived from the Layer class. While both of the

classes have similar uses, the TiledLayer class proves more suitable for managing

background features, while the Sprite class offers an interface that readily

accommodates such foreground activities as collision detection.

GameCanvas
The primary responsibility of the GameCanvas class is to allow you to manage the

objects you display during the life of a game and the key events that you use to

change those objects. While it offers only five new methods beyond those pro-

vided by the Canvas class, these methods are all extraordinarily helpful. For

example, the getGraphics() method enables you to implement calls to Graphics

methods without also having to center your activities using the paint() method.

The getKeyStates()method provides a refined approach to processing messages.

The flushGraphics() method is overloaded to enable you to render the contents

of a selected region. With respect to message processing, as the discussion in

Table 14.1 reveals, the GameCanvas class also furnishes a set of defined values that

can be handled by the getKeyStates() method.

400 Chapter 14 n The Game API

Figure 14.1
The specialized version of the Canvas class that the Game API provides allows you to work readily with
a number of game features.

The Sprite Class and Frame Sequences

The Sprite class allows you to manage Image objects. The constructors for the

Sprite class allow you to create a Sprite object by using either an Image object or

a Sprite object. If you create a Sprite object with an Image object, one of the

constructors allows you to define the frame sequence of the object as you define

it. In addition, the Sprite class provides the setTransform() and collidesWith()

methods. The setTransform() method uses a number of defined values from the

Sprite class to allow you to rotate and flip the Image object the Sprite embodies.

The collidesWith() method allows you to detect whether one Sprite object is

colliding with another.

While accommodating and managing Image objects in situations involving

rotation, flipping, and collision, the Sprite class also enables you to work with

frames. A frame is analogous to a cell in a table. As Figure 14.2 illustrates, a given

picture or drawing (an Image object) can be divided into a set of frames, all

the same size. Each frame in the set of frames is identified by frameWidth and

frameHeight properties. One way to create such a set of frames is to use one of the

GameCanvas 401

Table 14.1 Selected GameCanvas Class Features

Feature Description

protected GameCanvas(boolean) Creates a new instance of the GameCanvas class. The argument is of
the boolean type and designates whether the GameCanvas object
is to process key events. If set to false, it processes no events.

void flushGraphics() Renders the entire area associated with the GameCanvas object.

void flushGraphics
(x, y, int, int)

Renders the area designated to the display. The first two arguments
are the coordinates of the upper left corner of the rectangular areas
to be cleared. The third argument is the width of the area. The final
argument is the height.

protected Graphics
getGraphics()

Returns a Graphics object suitable for rendering graphics for a
GameCanvas.

int getKeyStates() Processes events generated by the keys named for game events.
See the list below.

void paint(Graphics) Serves the same role as the method of the same name in the
Canvas class. This method paints GameCanvas.

static int DOWN_PRESSED Associated with the DOWN key.

static int FIRE_PRESSED Associated with the FIRE key.

static int GAME_A_PRESSED Associated with the GAME_A key.

static int LEFT_PRESSED Associated with the LEFT key.

static int RIGHT_PRESSED Associated with the RIGHT key.

static int UP_PRESSED Associated with the UP key.

overloaded Sprite constructors, which allows you to furnish an Image and then

the height and width dimensions you want to apply to it.

When you use a set of frames, you identify them with indexes. Each frame is

associated with a unique index. In this way, a set of frames has a sequence. For

example, in Figure 14.2, you see a sequence of four frames, each containing one

face, and the default frame sequence begins at frame 0 and extends to frame 3. If the

total size of the image of the four faces is 200 by 55 pixels, then each frame in the

frame set is identified by a dimension of 50 (frameWidth) by 55 (frameHeight). If

you use the default sequence of frames, then the face on the left is associated with

index 0. As you move through the frame sequence, you move through its

‘‘horizontal’’ dimension, from one face frame to the next, until you reach frame 3.

The default sequence is not the only sequence. In fact, you can set any sequence

you want by using a unique frame sequence array. As Figure 14.2 illustrates, you

tell the Sprite object how to define the sequence by defining an array of the int

type and populating it with a set of values that establishes the sequence in which

you want the frames in the frame set to be accessed for display. The sequence you

associate with a Sprite replaces the default sequence.

To associate a frame sequence with a Sprite, you call the Sprite::setFrame-

Sequence() method. This method takes one argument, a reference to the sequence

array. Then, to access the frames as defined by the frame sequence, you call one of

three basic methods provided by the Sprite class. As Table 14.2 reveals, these are

the setFrame(), prevFrame(), and nextFrame() methods. The first two of these

methods take no arguments and each time they are called they move what might

be viewed as a frame pointer. The pointer moves through the sequence to the next

or previous frame with each newmethod call. In this respect, the prevFrame() and

nextFrame() methods pose the danger of memory access violation. For this rea-

son, the setFrame() method is useful.

402 Chapter 14 n The Game API

Figure 14.2
The frames of a given image are analogous to cells in a table or indexed elements in an array.

GameCanvas 403

Table 14.2 Sprite Methods and Properties

Method Description

Sprite(Image) Creates a new instance of the Sprite class. It takes an argument
of the Image type. The Image object you use as an argument
determines the size.

Sprite(Image, int, int) Creates an instance of the Sprite class and defines the
dimensions of the frame of the Sprite. Its first is argument is of
the Image type. The Image object you use as an argument is
sized according to the dimensions given by the second and third
arguments. The second argument sets the width. The third
argument sets the height.

Sprite(Sprite) Takes another Sprite object as an argument. This allows you to
easily duplicate Sprite objects. It produces an exact copy.

boolean collidesWith
(Image, int, int, boolean)

Allows you to detect collision with a given Image object. The first
argument is of the Image type and identifies the Image object
with which collisions can occur. The second and third arguments
identify the Sprite object to be detected. The final argument is
the pixel level of the target object. If set to false, the detection
takes place through evaluation of pixel values.

boolean collidesWith
(Sprite, boolean)

Allows you to detect collision with a given Sprite object. The
first argument is of the Sprite type and identifies the Sprite
object with which collisions can occur. The second argument is
the pixel level of the target object.

boolean collidesWith
(TiledLayer, boolean)

Allows you to detect collision with a given Sprite object. The
first argument is of the TiledLayer type and identifies the
Sprite object with which collisions can occur. The second
argument is the pixel level of the target object.

void defineCollisionRectangle
(int, int, int, int)

Allows you to detect collision with the bounding box of a Sprite
object. The first two arguments set the upper left corner of the
bounding box. The third argument sets the width. The final
argument sets the height.

void defineReferencePixel
(int x, int y)

Designates a pixel within a Sprite object that you can use to
define the position of the Sprite object. This provides you with
an alternative to using the coordinates of the upper left corner.
For this method, the two arguments designate the x- and
y-coordinates to use to define the position of the Sprite object.

int getFrame() Retrieves the current index in the frame sequence.

int getFrameSequenceLength() Retrieves the number of elements in the frame sequence.

int getRawFrameCount() Retrieves the number of raw frames for this Sprite.

int getRefPixelX() Returns the horizontal position of the reference pixel of the
Sprite object in the coordinate system of the painter.

int getRefPixelY() Gets the vertical position of this Sprite’s reference pixel in the
painter’s coordinate system.

void nextFrame() Moves the frame pointer forward one position in the frame
sequence that applies to the Sprite object.

(Continued)

The setFrame() method takes one argument, of the int type, and allows you to

locate the pointer in the frame set without regard to sequence. That way, if you

progress through the default sequence shown in Figure 14.2, then when you

reach frame 3, you can call the setFrame()method to move back to frame 0.With

404 Chapter 14 n The Game API

void paint(Graphics) Draws the Sprite object. Note that you call this method using a
reference to a Graphics object that you can retrieve with a call
to the getGraphics() method of GameCanvas class. Paint-
ing of Sprites (and the Image objects they contain) does not
require the implementation of a paint() method---as is the case
with the Canvas class.

void prevFrame() Moves the frame pointer backward one position in the frame
sequence that applies to the Sprite object.

void setFrame(int) Allows you to arbitrarily designate the position of the frame
pointer in the frame sequence. The argument you supply
designates which frame is to be accessed for display.

void setFrameSequence(int[]) The argument for this method is an array that you define. The
array consists of integer values that define the sequence in which
you want the frames in a frame set to be accessed.

void setImage(Image,
int, int)

Allows you to initialize or replace the Image object associated
with a Sprite. The first argument is a reference to the Image
object you want to assign to the Sprite object. The last two
arguments are the width and the height of the source image.

void setRefPixelPosition
(int x, int y)

Sets the position of the Sprite object so that the coordinate pair
used to position or detect the Sprite is set to an arbitrary
position in the area defined for the Sprite.

void setTransform(int) Allows you to transform the Sprite object using one of the
defined values provided by the Sprite class definition. The
defined values are all static int values. To find values that are
not defined, divide the given value by integers. For example,
TRANS_ROT90/2 transforms the Sprite object by 45 degrees.

TRANS_MIRROR Reflects the Sprite image about its vertical center.

TRANS_MIRROR_ROT90 Reflects the Sprite image about its vertical center and rotates it
clockwise 90 degrees.

TRANS_MIRROR_ROT180 Reflects the Sprite image about its vertical center and rotates it
180 degrees clockwise.

TRANS_MIRROR_ROT270 Reflects the Sprite image about its vertical center and rotates it
270 degrees clockwise.

TRANS_NONE Makes the Sprite image appear as loaded.

TRANS_ROT90 Rotates the Sprite image clockwise 90 degrees.

TRANS_ROT180 Rotates the Sprite image 180 degrees clockwise.

TRANS_ROT270 Rotates the Sprite image 270 degrees clockwise.

Table 14.2 Continued

Method Description

the arbitrarily defined sequence, four calls in a series to the nextFrame() method

move the pointer through the sequence established by 2, 1, 3, and 0, so when the

pointer reaches 3, the setFrame() method can be called to reposition it to 0. As

mentioned previously, Table 14.2 provides a summary of this method and other

features of the Sprite class.

SpriteStart

The SpriteStart class furnishes a MIDlet entrance point for the SpritePlay class,

which extends the GameCanvas class and implements the Runnable interface. The

code for the SpriteStart class is located in the Chapter 14 source folder, it

appears in the source folder for the NetBeans Chapter14MIDlets project and also

in a standalone version in the Isolated Java Files folder. Here is the code for the

SpriteStart class.

/*
* Chapter 14 \ SpriteStart.java
*
*/

import java.util.*;
import javax.microedition.lcdui.game.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class SpriteStart extends MIDlet{
public void startApp(){

SpritePlay game = new SpritePlay();
Display.getDisplay(this).setCurrent(game);
new Thread(game).start();

}

public void pauseApp(){
}

public void destroyApp(boolean uncon){
}

}

Trimmed to the bare essentials, the SpriteStart class has two responsibilities.

One is to create an instance of the SpritePlay class and assign it to the MIDlet

Display object. The other is to create a thread and call the start()method of the

GameCanvas 405

Thread object. The start() method calls the run() method in the SpriteStart

object, which is overridden as part of the definition of the SpriteStart class. You

can invoke the start()method because you use the version of the constructor for

the Thread class that takes as an argument a reference to an object of the Runnable

type. Since the SpritePlay class implements the Runnable interface, it is suitable

as an argument to the Thread constructor.

SpritePlay
The SpritePlay class allows you to explore several features of the interfaces of the

Sprite and GameCanvas classes. It also offers a few lines to illustrate the use of the

TiledLayer class. The features of the SpritePlay class definition are kept to a

minimum so that it is easy to explore such activities as using frame sets and

working with collision detection and transformation. Figure 14.3 provides a view

of a session with the SpritePlay class.

The faces you see in Figure 14.3 represent the implementation of the faces

shown in shown in Figure 14.2, but only the image on the left is generated using a

406 Chapter 14 n The Game API

Figure 14.3
A collision event retrieves a frame from a sequence of frames and rotates the result by 45 degrees.

frame set. The other two are created by using Sprite objects that contain single

images that feature one face only. This approach makes it easier for you to

explore how to replace one Image or Sprite object with another.

In Figure 14.3, the face on the bottom is inverted because it is associated with key

events that rotate it according to the direction of the SELECT button you have

clicked. The face above it, in the center, displays dark eyes because its eyes begin

to open and close whenever the object face on the bottom collides with it. To

the left, you see a third face, this one rotated 45 degrees to the right. One of its

eyes is closed. This face is taken from the frame sequence of four faces shown in

Figure 14.2. It is also transformed (rotated) by using a simple calculation to

customize the value provided by one of the default transformation properties the

Sprite class furnishes.

In the background of the display shown in Figure 14.3, you see the work of a

TiledLayer object. The abstract nature of the background allows you to see that a

single tile within a TiledLayer array has been arbitrarily replicated across and

downward over the display. To accomplish this, a for repetition statement is

implemented that reads the contents of the TiledLayer in much the same way as

you might read the contents of any two-dimensional array.

The SpritePlay class is included in the NetBeans Chapter14MIDlets project, which

is included in the Chapter 14 code folder. You use it in conjunction with the

SpriteStart class. Like the SpriteStart class, you can also find it in a standalone

version in the Chapter 14 code folder. Here is the code for the SpritePlay class.

/*
* Chapter 14 \ SpritePlay.java
*
*/

import java.util.*;
import javax.microedition.lcdui.game.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

class SpritePlay extends GameCanvas implements Runnable{
// #1

private TiledLayer tlBackground = null;
private int cols;
private int rows;
private int xPos;

SpritePlay 407

private int yPos;
private Graphics graphics;
private Image image;
private Image otherImage;
private Sprite spriteA;
private Sprite spriteB;
static int SPRITE_H_W = 48;
static int GAME_TIME = 30;
private boolean eventFlag;
static int TILE_H_W = 16;
static int WIDTH = 50;
static int HEIGHT = 55;
static int[] FRAME_SEQUENCE = { 1, 2, 3, 0};
private Image facesImage;
private Sprite facesSprite;

private Random rNum;

// #2
public SpritePlay(){

super(false);
xPos = this.getWidth()/2;
yPos = this.getHeight()/3;
image = null;
otherImage = null;
eventFlag = true;
rNum = new Random();

// #2.1
try{

facesImage = Image.createImage("/FaceSet.png");
facesSprite = new Sprite(facesImage, WIDTH, HEIGHT);
facesSprite.setFrameSequence(FRAME_SEQUENCE);

}catch (Exception ex){
ex.toString();

}

// #2.2
try{

Image background = Image.createImage("/background.PNG");
cols = getWidth()/TILE_H_W;
rows = getHeight()/TILE_H_W;
/*

408 Chapter 14 n The Game API

System.out.println("Value of TILE_H_W: " + TILE_H_W);
System.out.println("Pixel witdth of display: " + getWidth());
System.out.println("Number of columns: " + getWidth()/TILE_H_W);
System.out.println("Pixel height of display: " + getHeight());
System.out.println("Number of rows: " + getHeight()/TILE_H_W);

*/
tlBackground = new TiledLayer(cols, rows,

background, TILE_H_W, TILE_H_W);

//System.out.println("Number of rows: " +
int tileCount = background.getWidth()/TILE_H_W;

//System.out.println("Tile count " + tileCount);

// #2.3
drawSelectedTiles(tlBackground, false, tileCount);
//drawSelectedTiles(tlBackground, true, tileCount);

// #2.4
//paintWallTilesOnly();

}catch (Exception ex){
ex.toString();

}
}

// #3
public void run(){

Graphics g = getGraphics();
spriteA = createSprite("/Face.png", SPRITE_H_W, SPRITE_H_W);
spriteB = createSprite("/OtherFace.png", SPRITE_H_W, SPRITE_H_W);
spriteA.defineReferencePixel(3,3);
spriteB.defineReferencePixel(0,0);

// #3.1
while (true){

int keyState = getKeyStates();
if ((keyState & UP_PRESSED) != 0) {

yPos--;
spriteA.setTransform(Sprite.TRANS_NONE);

}else if ((keyState & RIGHT_PRESSED) != 0){
xPos++;
spriteA.setTransform(Sprite.TRANS_ROT90);

SpritePlay 409

}else if ((keyState & LEFT_PRESSED) != 0){
xPos- -;
spriteA.setTransform(Sprite.TRANS_ROT270);

}else if ((keyState & DOWN_PRESSED) != 0){
yPos++;
spriteA.setTransform(spriteA.TRANS_MIRROR_ROT180);

}

// #3.2
xPos = checkArea(xPos, true);
yPos = checkArea(yPos, false);

// #3.3
spriteA.setPosition(xPos, yPos);

spriteB.setPosition(this.getWidth()/2,
2 * this.getWidth()/3);

/*
System.out.println("facesSprite getX() (before set)" +

facesSprite.getX());

System.out.println("facesSprite getRefPixelX()" +
" (before set):" +
facesSprite.getRefPixelX());

facesSprite.setRefPixelPosition(facesSprite.getWidth()/2,
facesSprite.getWidth()/2);

System.out.println("facesSprite getRefPixelX() " +
" (after set):" +

facesSprite.getRefPixelX());
*/

facesSprite.setPosition(getWidth()/16,
2 * getWidth()/3);

// System.out.println("facesSprite getX() " +
// "(after after ref pixel set)" +
// facesSprite.getX());

clearScreen(g);
// #3.4
tlBackground.paint(g);
spriteB.paint(g);
spriteA.paint(g);

410 Chapter 14 n The Game API

//facesSprite.setFrame(0);
//facesSprite.setFrame(1);
//facesSprite.setFrame(2);
facesSprite.setFrame(3);
facesSprite.paint(g);

// #3.5
showPosition();

// #3.6
changeSprites();

// #3.7
//detectWallTileCollision();

// #3.8
flushGraphics();

try{
Thread.currentThread().sleep(GAME_TIME);

} catch (InterruptedException x){
}

}
}

// #4
private void changeSprites(){

if(spriteA.collidesWith(spriteB, true)){
this.reportEvent("Collision " + spriteA.getRefPixelX());
int num = rNum.nextInt(5);
if(eventFlag = = true){

spriteB.setImage(createImage("/StrangeFace.png"),
SPRITE_H_W, SPRITE_H_W);

// #4.1
if(num == 3){

facesSprite.setTransform(Sprite.TRANS_ROT90/2);
}
facesSprite.nextFrame();
eventFlag = false;

}else{
spriteB.setImage(createImage("/Face.png"),

SPRITE_H_W, SPRITE_H_W);

SpritePlay 411

eventFlag = true;
facesSprite.setFrame(2);
if(num == 2){

facesSprite.setTransform(Sprite.TRANS_ROT180/3);
facesSprite.setTransform(Sprite.TRANS_ROT270);

}
}

}
}

// #5
public Graphics getGraphics(){

return super.getGraphics();
}

// #6
private Sprite createSprite(String fileName, int width, int height){

Image tempImage = null;
try{

tempImage = Image.createImage(fileName);
}catch (Exception ex){

return null;
}
return new Sprite(tempImage, width, height);

}

// #7
private Image createImage(String fileName) {

Image tempImage = null;
try{

tempImage = Image.createImage(fileName);
}catch (Exception ex){

return null;
}
return tempImage;

}

// #8
private void clearScreen(Graphics g){

g.setColor(0xFFFFFF);
g.fillRect(0, 0, getWidth(), getHeight());

}

412 Chapter 14 n The Game API

// #9
protected void showPosition(){

Graphics g = getGraphics();
g.setColor(0xf0fff0) ;
String xCoord = String.valueOf(xPos);
String yCoord = String.valueOf(yPos);
g.setColor(0xf8f8ff) ;
g.fillRect(0, 0, this.getWidth(), 20);
g.setColor(0x0f0f0f) ;
g.drawString("Position: x:" + xCoord + "\t y: "

+ yCoord , 0, 0, 0);
}

// #10
protected void reportEvent(String event){

Graphics g = getGraphics();
g.setColor(0x0f0f0f) ;
g.drawString(event, this.getWidth()/2, 0, 0);

}

// #11
private void drawSelectedTiles(TiledLayer tLayer,

boolean seeAll, int maxScrTiles){
int srcTileNum = 1;
for(int colcnt = 0; colcnt < tLayer.getColumns(); colcnt++){

for(int rowcnt = 0; rowcnt < tLayer.getRows(); rowcnt++)
{

if(seeAll == true){
srcTileNum++;

}
if(srcTileNum > maxScrTiles){

srcTileNum = 0;
}
tlBackground.setCell(colcnt, rowcnt, srcTileNum);

}
}

}

// #12
private int checkArea(int crd, boolean isWidth){

SpritePlay 413

if (crd < 0){
return 0;

}
if (isWidth && crd > getWidth()){

return getWidth();
}
if (crd > getHeight()){

return getHeight();
}
return crd;

}

// #13
private void paintWallTilesOnly(){

tlBackground.setCell(0, 0, 1);
tlBackground.setCell(1, 1, 1);
tlBackground.setCell(2, 2, 2);
tlBackground.setCell(3, 3, 3);
tlBackground.setCell(4, 4, 4);
tlBackground.setCell(5, 5, 0);
tlBackground.setCell(5, 5, 1);
tlBackground.setCell(5, 6, 2);
tlBackground.setCell(5, 7, 3);
tlBackground.setCell(5, 8, 4);
tlBackground.setCell(6, 5, 1);
tlBackground.setCell(7, 5, 2);
tlBackground.setCell(8, 5, 3);
tlBackground.setCell(9, 5, 4);

}

// #14
private void detectWallTileCollision(){

if (spriteA.collidesWith(tlBackground,true)){
reportEvent("Ran into a wall");

}
}

}//end class

Definition and Construction

As is evident from the signature line that precedes comment #1, the definition of

the SpritePlay class extends the GameCanvas class and implements the Runnable

interface. By extending the GameCanvas class, the SpritePlay class acquires the event

414 Chapter 14 n The Game API

handling capabilities furnished by the getKeyStates() method, which is discussed

further along in the current chapter. By implementing the Runnable interface, the

class gains access to the run() method, which houses the main animation

(or game) loop. This activity is also discussed further along in this chapter.

In the lines following comment #1, a number of class attributes are defined. These

include an attribute of the TiledLayer type (tlBackround) and a set of attributes

of the int type that accommodate processing of the cells of the TiledLayer object.

Next in the list are attributes of the Graphics and Image type, which allow you to

explore how to replace one Image object with another.

In a further step, two constant values, WIDTH and HEIGHT, are defined. These two

attributes provide the frame dimensions for the sequence of frames shown in

Figure 14.2. Following the definition of the frame dimension values, you define

an array of the int type that establishes the sequence that applies to the frames.

Along with the definition of the frame sequence come the Image and Sprite

attributes used to define and manage the sequence of frames.

In the lines trailing comment #2, the constructor for the SpritePlay class initi-

alizes the constructor for the parent GameCanvas class. This is accomplished by

using the super keyword and supplying an argument of false. The constructor

takes a single argument that allows you to designate whether you want your

specialized definition of the GameCanvas class to exclude processing of key events.

Since the GameCanvas class has only one constructor, you must provide a call to it

as the first statement in the definition of your derived class. The argument of

false indicates that you want to define the getKeyStates() method so that

SpritePlay can process events initiated by keys. An argument of true results in a

specialized version of the GameCanvas class that cannot process key events using

the getKeyStates() method.

In addition to initialization of the parent class, you also attend to assigning values

to the xPos and yPos attributes. To accomplish this, you can draw on the get-

Width() and getHeight()methods of the GameCanvas class. You then initialize the

various Image attributes to null, set the imageFlag attribute to true, and initialize

the rNum attribute with an instance of the Random class.

The Frame Sequence

In the lines associated with comment #2.1, you carry forward the activities begun

in the declaration section of the SpritePlay class and fully define the frame set

SpritePlay 415

used to generate the changing image features on the left side of the display

illustrated in Figure 14.3. To review, to create the frame set, you require an Image

object that contains a set of frames of the same size (facesImage). You also

require a Sprite object to contain the Image object (facesSprite). Further, you

require int values that you can use to set the width and height of each frame in

the frame set (WIDTH and HEIGHT). Finally, you require an array of the int type that

defines the frame sequence (FRAME_SEQUENCE).

Once you have established this set of six attributes, you can proceed to set up the

frame set. As is evident in the lines following comment #2.1, you must perform

this work in the context provided by a try block, and your first task involves

creating an instance of the Image class. As an argument to the Image constructor,

you employ a string constant naming the source file that contains the drawings or

photographs to be used. In this case, you use FrameSet.png, and you assign the

instance of the Image class to the facesImage attribute.

Next, you call the Sprite constructor to create a Sprite object that is char-

acterized by a frame set. To accomplish this, you use the overloaded version of

the Sprite constructor that allows you to provide two arguments. The first

argument is of the Image type and provides the Image object the Sprite object is

to contain. The second argument is of the int type and calls for an array. This

argument furnishes the sequence of frames you want to apply to the Sprite

object. For the first argument you use the facesImage attribute. For the second

you use a reference FRAME_SEQUENCE array.

Use of the Sprite you have defined in association with the frame set is then

pursued in the lines associated with comment #3.4, which occurs in the context

provided by the run() method. Here you render the Sprite object visible, but

prior to that, you call the setRefPixelPosition(), which adjusts the position of

the reference pixel for each frame so that it is in the center of the image area.

Immediately after setting the reference pixel, you set the position of the faces-

Sprite object. In conjunction with these activities, you call the getRefPixelX()

and getX() methods of the Sprite class to show the results. The output of these

calls reveals that after setting the reference pixel, you do not change the coor-

dinate value used to position the Sprite object. You change only the reference

value, which can be used, among other things, to detect collisions. Figure 14.4

shows a sample of the output.

Rendering the Sprite object you have defined using a frame sequence can be

accomplished most readily in the context of the run() method by calling the

416 Chapter 14 n The Game API

Sprite::paint() method, as is accomplished in the lines immediately following

comment #3.4. Such a call paints the first frame in the sequence unless you have

set an alternative frame. Comment out different lines to see the full range of face

images the frame set provides. Test code is left in the class to allow you to

experiment in this way.

//facesSprite.setFrame(0);
facesSprite.setFrame(1);
//facesSprite.setFrame(2);
//facesSprite.setFrame(3);
facesSprite.paint(g);
//changeSprites();

Figure 14.5 shows how the mapping of the frames using an arbitrary frame set

effects the results of the arguments to the setFrame() method. When you supply

the setFrame() method with an argument of 3, for example, it maps to the third

index value in the FRAME_SEQUENCE array, which is 0. The face you see in the

display, then, is the one with its left eye darkened.

No t e

If you define several arrays containing different sequences of values, then you can use the same
frame set to address a large number of scenarios. For example, a frame set might contain dozens
of drawings or pictures of a character in different poses. You select from among this set of poses
to address different scenarios: stand---run---stand; stand---walk---stand; stand---jump---fall. Reusing
frame elements in this way, all drawn from a single Image object using a single Sprite object,
reduces the number of assets you employ and allows you to concentrate on defining the
sequences used to realize the scenarios.

Sprite and Image Creation

In the lines associated with comment #6, you define the createSprite()method,

which can be used in any context in which you want to create a reference to a

Sprite object. The method takes three arguments. The first is the name of the

SpritePlay 417

Figure 14.4
Setting the reference pixel has no effect on the position of the object, only on how the object is detected.

source file to use for the Image object. The second and third arguments provide

integer values to establish the width and height values of the source image.

Implementation of the method requires that you use a try block to load the file

information into the Image object. To effect the creation of the Image object, you

call the createImage() method in the context of the try block.

Once the file information is successfully loaded into the Image object, you can

then make use of the Sprite constructor to create a new Sprite object. The

Sprite constructor takes three arguments. The first is a reference to an Image

object. The second and third are integer values that define the width and height of

the Sprite object. Several instances in which this method is called are discussed

in subsequent sections.

418 Chapter 14 n The Game API

Figure 14.5
The setFrame() method allows you to explore the effects of the application of an arbitrarily defined
frame sequence.

Wrapping the construction activity in the createSprite() method removes the

necessity of repeatedly defining try blocks. It also makes it easier to move from

the name of a source file to the creation of an instance of a Sprite object.

The createImage() method works much like the createSprite method. Create-

Image wraps the Image::createImage() method so that it can be called locally

without the need to repeatedly use static calls from the Image class. Like the

overloaded version of the Image method that it wraps, it takes one argument, the

name of the file used as the source of the Image object. To create the Image object, a

call is made to the Image::createImage() method. Wrapping the creation activity

in the Image::createImage() method removes the need to work with try. Uses of

the createImage() method are discussed in subsequent sections.

TiledLayer
In the lines associated with comment #2.2, a try block is implemented to

contain the definition of an object of the TiledLayer type. Definition of this

object proceeds along lines similar to those used to define a Sprite object. You

begin by calling the createImage() method to load the source file data into the

Image object (background). Figure 14.6 shows a vastly enlarged view of the gra-

phical file used for this purpose. The size of the image is 16 pixels high and

64 pixels long.

TiledLayer 419

Figure 14.6
You create an image file that you can use to create cells for a TiledLayer object.

As mentioned in Table 14.3, the TiledLayer object takes five arguments. For

convenience, here is the basic form of the constructor shown in Table 14.3:

TiledLayer(int, int, Image, int, int);

The first two arguments of the TiledLayer constructor define the TiledLayer

object you are creating. This object consists of rows and columns of cells. The

420 Chapter 14 n The Game API

Table 14.3 TiledLayer Class Methods

Method Description

TiledLayer(int, int, int,
Image, int, int)

Creates a new TiledLayer object. The first two arguments
designate the number of columns and rows you want the
TiledLayer object to provide. The third argument is the Image
object you want to use as a source for the TiledLayer object.
The last two arguments provide the width and height of the tiles in the
Image object. Note that the index values of tiles in the Image object
begin at 1. The column and row values of the TiledLayer object
begin at 0.

Int createAnimatedTile
(int)

Creates a new animated tile and returns the index that refers to the
new animated tile.

void fillCells(int, int,
int, int, int)

Fills a region of cells in a TiledLayer object with the specified tile.
The first two arguments designate the column and row of cell that is
at the upper left corner of the area you want to fill. The third and
fourth arguments designate the number of columns and rows
extending to the left and downward from the cell defined by the
first two arguments that you want to fill. The last argument is the
index of the tile that you want to use to fill the cells.

int getAnimatedTile(int) Retrieves the tile referenced by an animated tile.

int getCell(int, int) Retrieves the contents of a cell. The first argument is the number of
the column. The second argument is the number of the row.

int getCellHeight() Returns the height of a single cell, in pixels.

int getCellWidth() Returns width of a single cell, in pixels.

int getColumns() Retrieves the number of columns in the TiledLayer grid.

int getRows() Provides the number of rows in the TiledLayer grid.

void paint(Graphics g) Draws the TiledLayer.

void setAnimatedTile
(int, int)

Associates an animated tile with the specified static tile. The first
argument identifies the animated index. The second argument
identifies the static index.

void setCell(int, int, int) The primary method of identifying the cells you want to display. The first
argument identifies the column. The second argument identifies the row.
The last argument designates the index of the tile to be set. The index
value designates the position of the tile in the source Image object.

void setStaticTileSet
(Image, int, int)

Allows you to set the static tile set. The second and third arguments
designate the width and height of the Image object named by the
first argument.

first argument designates the number of rows. The second argument designates

the number of columns. The third argument applies to the Image object you use

for source material for the TiledLayer object. In this case, you use the background

attribute, as shown in Figure 14.6. The final two arguments define the dimen-

sions of the tiles within the TileLayer object.

In the lines associated with comment #1, the TILE_H_W attribute is assigned a

constant value of 16. This value is used in part because, as Figure 14.6 shows, the

source file’s contents can be divided evenly by 4, creating four uniform source tiles.

Using the TILE_H_W class attribute, you are in a position to create four 16-by-16

pixel tiles. To determine how many such cells are needed to fill the area provided

by the display area, you call the getWidth() and getHeight() methods of the

GameCanvas class and divide the returned values by the value assigned to TILE_H_W

(16). Here is a refrain of test code you can use to obtain the values needed to

determine the number of rows and columns the display area accommodates:

System.out.println("Value of TILE_H_W: " + TILE_H_W);
System.out.println("Pixel witdth of display: " + getWidth());
System.out.println("Number of columns: " + getWidth()/TILE_H_W);
System.out.println("Pixel height of display: " + getHeight());
System.out.println("Number of rows: " + getHeight()/TILE_H_W);

Running this refrain, the output to NetBeans appears as shown in Figure 14.7.

Suitable values to fill the display are, then, 15 columns and 18 rows. The TiledLayer

object is constructed to consist of 15 columns and 18 rows, and this is what appears

when the drawTiles() method is called. Defined in the lines associated with

comment #11, the drawTiles() method takes three arguments. The first argument

is of the TiledLayer type and furnishes a reference to the TiledLayer object whose

contents you want to display. The second argument is of the boolean type and

indicates whether you want to see all the tiles in the TiledLayer or just the one

associated with index 1. Setting this value to true allows you to view all the tiles.

TiledLayer 421

Figure 14.7
The output to NetBeans that is created by running the refrain.

The last argument is the maximum tile count as obtained from the source file.

When you invoke the method with an argument of true to show all tiles, you see

the background displayed by Figure 14.8.

Setting Cells

As mentioned previously, the drawSelectedTiles()method is called just following

comment #2.3. This method is defined in association with the lines following

comment #11. In its definition, a call is made to the TiledLayer::setCell()

method. This method takes three arguments. The first argument is the column

number of a cell in the TiledLayer object. The second argument is the row number

of a cell in the TiledLayer object. Column and row values in a TiledLayer object

begin at (0, 0).

The third argument of the setCell()method relates not to the TiledLayer object

specifically but to the source tiles used to create it. To review a bit, in the

SpritePlay class you create a TiledLayer object called tlBackground. To create

422 Chapter 14 n The Game API

Figure 14.8
Set the second argument of the drawSelectedTiles() method to true to see all the source tiles
provided by the Image object (comment #2.3).

this object, you use an Image object, background. The Image object offers four

cells, as illustrated in Figure 14.9. The cells in the Image object are identified with

index values that extend from 1 to 4. The third argument of the setCell()

method, then, refers to the index value of the Image object. Consider, for

example, this call to the setCell() method:

tlBackground.setCell(0, 0, 3);

This call to the setCell() method assigns a tile from the source Image object to a

cell in the TiledLayer object. The cell to which the tile is assigned is located in

column 0, row 0. The third argument identifies the third tile from the source Image

file. As the display on the lower right shows, you see tile 3 from the source

Image object displayed in the upper left corner of the display area. To see how this

works for yourself, refer at this point to the sidebar ‘‘Selecting Specific Cells.’’

TiledLayer 423

Figure 14.9
The upper left of the display area shows that you have used the setCell() method to set tile 3 from
the source Image object in the TiledLayer cell identified by column 0, row 0.

S e l e c t i n g S p e c i f i c C e l l s

To create the effects shown in Figure 14.9, use the following procedure.

1. In the SpritePlay class definition, locate comment #2.3. Comment out the line that reads
as follows:

//drawSelectedTiles(tlBackground, true, tileCount);

2. In the SpritePlay class definition, locate the line associated with comment #2.4. Remove
the comment so that the call to the method becomes active. Here is how your code appears
when you finish this step:

paintWallTilesOnly();

3. Now scroll through the source SpritePlay source code until you come to comment #13,
which is associated with the definition of the paintWallTilesOnly() method. Notice that
it is defined so that it sets the tiles you see painted in Figure 14.9.

4. Comment out the showPosition() method on the line following comment #3.5. This
makes it so that row 0 of the TiledLayer object is visible.

// showPosition();

5. Now recompile the program and view the results.

6. When you finish with this experiment, restore the code to its previous state. Remove the
comment from the drawSelectedTiles() method (comment #2.3). Again comment out
the call to the paintWallTilesOnly() method (comment #2.4). Also, remove the com-
ments from the showPosition() method call (#3.5).

Sprite Collisions and Setting and Transforming Images

Having worked with Sprite and TiledLayer objects in the SpritePlay class

definition, you are now in a good position to investigate a few basic operations

involving collision detection. In this respect, in the line associated with comment

#2.6, you see a call to the changeSprites()method. This method is defined in the

lines associated with comment #4.

In the definition of the changeSprites()method, you begin by using the spriteA

attribute to call the collidesWith() method. The Sprite class provides three

overloaded versions of the collidesWith() method. This one takes as its first

argument the name of the Sprite object with which collisions are to be detected.

In this instance, you provide the spriteB identifier. The second argument of the

method indicates whether you want to detect collisions using pixel values.

Defined in this way, the method returns true if the spriteA object begins to

overlap the spriteB object.

424 Chapter 14 n The Game API

In the lines that follow, you call the nextInt() method of the Random class to

retrieve a random value in the range from 0 to 4. You also check to see whether

the attribute set up as a toggle (eventFlag) is true. If the eventFlag attribute is

true, then you use the spriteB object to call the setImage()method of the Sprite

class to acquire a new Image object for itself.

The setImage()method takes three arguments. The first is a reference to an Image

object. This is provided by the SpritePlay::createImage() method, which

returns an Image object if you provide it with the name of a file to use as a source

file for the Image object. The second and third arguments to the setImage()

methods are the width and height dimensions you want to assign to the newly

assigned Image object. To provide these values, you use the SPRITE_W_H attribute,

defined in the first few lines of the class definition, where it is set to a value of 48.

The new Image object has two darkened eyes, so that the eyes of spriteB, the

stationary sprite in center of the display area, begin to winkwhen a collision occurs.

In the lines trailing comment #4.1, a selection statement is implemented that tests

for the value of 3. If the block of this selection statement is entered, then you call

the setTransform()method of the Sprite class. This method takes as its argument

a defined value obtained from the Sprite class (TRANS_ROT90). Dividing this value

by 2 makes the Sprite object on the right of the display pivot 45 degrees.

Exiting the selection statement that evaluates num against 3, you call the nextFrame()

method of the Sprite class. This has the effect of forcing the Sprite to augment its

frame by one index. At this point, the eventFlag attribute is reset to false.

As an alternate cycle of activity, you again alter both the spriteB and the

facesSprite objects. Begin by calling the setImage()method to restore the image

of the face so that its eyes are once again clear. After setting eventFlag to true,

you then call the setFrame() method to assign the face associated with index 2 of

the facesSprite object. Given this new face for the object, you then set up

another selection statement, this one calling the setTransform()method twice to

once again pivot the sprite on the left of the display area.

TiledLayer Collisions

To review the activities presented in this section, perform the actions described

in the sidebar entitled ‘‘Collision Detection with Specific Cells.’’ When you

have completed the instructions given there, return to this section. After you have

changed the code, you see the display shown in Figure 14.10. When you click the

TiledLayer 425

Up arrow of the SELECT button (or use the Up arrow key on your keyboard), the

active Sprite object moves upward and comes into contact with the broken

images generated by the TiledLayer object. As soon as it makes contact with the

tiled layer, you see a message at the top of the display: ‘‘Ran into a wall’’.

The detectWallTileCollision() method detects the collision between the active

Sprite object and the TiledLayer object. The detectWallTileCollision()

method is defined in the lines associated with comment #14. The code used to

implement the collision detection capabilities involves a selection statement and

a call to the collidesWith() method of the Sprite class. The spriteA object is

used call the method, and as an argument to the method you provide the name of

the TiledLayer object to be tested for collision. You also supply a boolean value

to indicate that you want to use pixel values to test for the collision. This way,

when the area of the Sprite object impinges on any cell of the TiledLayer object,

an event is generated.

To report the event, the reportEvent() method is called. This method is defined

in the lines associated with comment #10. The reportEvent()method takes as its

argument a value of the String type. It writes the message it is given to the upper

426 Chapter 14 n The Game API

Figure 14.10
Collision between a TiledLayer object and a Sprite object creates an event.

right of the console, as shown in Figure 14.10. To define this method, you use

the getGraphics()method, which is supplied by the GameCanvas class. In this context,

as is evident in the lines associated with comment #5, you wrap a call to the

method as supplied by the parent class to return a reference to a Graphics object.

Co l l i s i o n D e t e c t i o n w i t h S p e c i f i c C e l l s

To work with collisions between a Sprite object and a TiledLayer object, make the following
changes in the SpritePlay class.

1. In the SpritePlay class definition, locate comment #2.3. Comment out the line that reads
as follows:

// #2.3

//drawSelectedTiles(tlBackground, true, tileCount);

2. In the SpritePlay class definition, locate the line associated with comment #2.4. Remove
the comments from the line with the call to the paintWallTilesOnly() method:

// #2.4

paintWallTilesOnly();

3. Now locate the line associated with comment #3.7. Remove the comments from the call to
the detectWallTileCollision() method:

// #3.7

detectWallTileCollision();

4. Compile and run the MIDlet.

5. When you now move the Sprite so that it makes contact with the jagged wall
(TiledLayer) object, you see a new message, ‘‘Ran into a Wall’’.

6. When you finish with this experiment, restore the class to its previous state. Remove the
comment from the drawSelectedTiles() method (comment #2.3). Again comment out
the call to the paintWallTilesOnly() method (comment #2.4). Again comment out the
call to the detectWallTileCollision() method (comment #3.7).

Key Events
To process key events, you use the getKeyStates()method. This method is called

in the lines immediately following comment #3.1 within the scope of the run()

method. The run()method, as has been mentioned previously, is supplied by the

Runnable interface and allows you to use a Thread object to control the actions of

the game loop. Accordingly, in the lines following comment #3, you create

instances of a Graphics object to use for rendering by calling the getGraphics()

method and then create instances of the Sprite class to assign to the spriteA and

spriteB objects. After that, you call the defineReferencePixel() method to place

in the two Sprite object reference pixels that might be used for any number of

purposes. This sets up the first two actors or characters of the game.

Key Events 427

428 Chapter 14 n The Game API

The next step is to implement an infinite loop that is capable of processing events.

The first call in this context, immediately following comment #3.1, is a call to the

getKeyStates()method, which returns a value of the int type that can be used in

a set of selection statements to manipulate the values of xPos and yPos. These values

are associatedwith the spriteA object, so as you use them, you can constantly repost

the spriteA object, which is the main ‘‘avatar’’ of the SpritePlay class.

The defined values supplied by the GameCanvas class are joined with the keyState

value to make the selections possible. In this way, for example, the UP_PRESSED

value serves to guide the flow of events into a selection block that allows you to

decrement the value of yPos, which ultimately moves the spriteA object toward

the top of the display area.

Showing the Position of the Avatar Sprite

As Figure 14.11 illustrates, at the top of the display, the coordinate values of the

moving Sprite object are continuously shown. To provide this information to

the display area, you call the showPosition() method in the line associated with

comment #3.7. This method, which resides in the main game loop, is updated

with each cycle of the animation or rendering loop of the application, and as it is

called, if the position of the main Sprite object has changed, then you see a

change in the values displayed.

The showPosition() method is defined in the lines trailing comment #9. The

method takes no arguments and returns no values. To implement the method,

you call the getGraphics() method. The Graphics reference, assigned to the g

identifier, is then used to make a number of calls to methods of the Graphics

class, including setColor(), fillRect(), and drawsString(). The getGraphics()

method provides a convenient vehicle for obtaining a reference to the Graphics of

the GameCanvas class to be used for specific purposes.

To obtain the coordinate values associated with the primary Sprite object

(spriteA), you make use of the String::valueOf()method to convert the integer

values into String objects. This measure is not absolutely necessary, but it makes

it easier to use the values in display contexts if you want to expand the capabilities

of the showPosition() method.

Clearing, Flushing, and Timing

With each cycle of the main animation loop, you have a number of options

available to you as you deal with what is displayed. One of the most straightforward

Key Events 429

options is to erase everything and render it again. To ensure that this can happen,

you implement the clearScreen() method, which is called just prior to comment

#3.4. Immediately after you call this method, you can invoke the Sprite::paint()

method for the TiledLayer and Sprite objects that provide the foreground and

background features of the display. For each of these calls, you make use of the

Graphics object that has been instantiated in the run() method.

The definition of the clearScreen() method is in the lines following comment #8.

The method takes a reference to a Graphics object as its sole argument. It then

uses this argument to call the setColor() and fillRect()methods of the Graphics

class. The fillRect() method requires several arguments. The first is to establish

the position of the upper left corner of the rectangle. The last two arguments

designate the width and height of the rectangle. To supply the last two arguments

to the fillRect() method, the getWidth() and getHeight() methods of the

GameCanvas class are called. The effect of the clearScreen() method is, then, to

paint over the display area with a white rectangle.

Figure 14.11
Coordinate positions are continuously updated.

A method at least conceptually akin to the clearSceen() method is the flush-

Graphics() method, which is called in the lines following comment #3.8. This

method is supplied by the GameCanvas class and allows you to clear the Graphics

buffer to make it ready for a new round of rendering.

As has been discussed already, the implementation of the Runnable interface

allows you to make use of the run() method as the location of the main ani-

mation loop of theMIDlet. To control the speed of the main loop, it is possible to

implement controls of greater or lesser complexity. In Chapter 13, you saw a

more typical example of a game loop control. In this context, no such approach is

used. Instead, as is evident in the lines associated with comment #3.8, you see

only the use of a call to the currentThread() method to retrieve the thread

associated with the current instance of the SpritePlay class. The current instance

of the Thread object is then used to call the sleep()method. The value used as an

argument to the sleep() method is a constant value, GAME_TIME, defined in the

attribute list for the class.

Parent Classes
In the context of the current discussion, few references have been made to the

Layer class, which is the abstract class from which the TiledLayer and Sprite

classes are derived. Table 14.4 provides a summary view of the Layer class. As is

evident from a cursory inspection, such methods as getHeight(), getWidth(),

and paint() are frequently used by the classes derived from the Layer class.

The LayerManager class is slightly beyond the scope of the discussion presented in this

chapter, but it proves useful in the game developed in Chapter 15. In Chapter 15,

you can find an example of how an instance of the class can be used to control the

visibility of Sprite and TiledLayer objects. For present purposes, Table 14.5

furnishes a brief review of some of the methods.

Conclusion
This chapter has provided a preliminary examination of the Layer, LayerManager,

GameCanvas, TiledLayer, and Sprite classes. The FacePlay class has provided

opportunities to work with a number of the methods provided by the Game-

Canvas, Sprite, and TiledLayer classes as related to the use of Image objects and

collision detection. Such explorations provide the groundwork for Chapter 15,

which extends the topics introduced in this chapter and involves you in the

430 Chapter 14 n The Game API

development of a game. As you refine your understanding of the Game API, you

can find a multitude of ways that the knowledge you have acquired while

working with the standard classes of the MIDP can be extended, in the end

allowing you to create complex games.

Conclusion 431

Table 14.4 Layer Methods

Feature Description

int getHeight() Gets the current height of this layer, in pixels.

int getWidth() Gets the current width of this layer, in pixels.

int getX() Gets the horizontal position of this layer’s upper left corner in the
painter’s coordinate system.

int getY() Gets the vertical position of this layer’s upper left corner in the
painter’s coordinate system.

boolean isVisible() Gets the visibility of this Layer.

void move(int, int) Moves this Layer by the specified horizontal and vertical distances.
The first argument is the horizontal distance. The second is the vertical
distance.

abstract void paint
(Graphics g)

Paints this Layer if it is visible.

void setPosition
(int x, int y)

Sets this layer’s position such that its upper left corner is located at
(x, y) in the painter’s coordinate system.

void setVisible
(boolean visible)

Sets the visibility of this Layer.

Table 14.5 LayerManager Methods

Feature Description

LayerManager() Creates a new LayerManager.

void append(Layer) Appends a Layer to the LayerManager.

Layer getLayerAt(int) Gets the Layer with the specified index.

int getSize() Gets the number of Layers in the LayerManager.

void insert(Layer, int) Inserts a new Layer in the LayerManager at the specified index.

void paint(Graphics g,
int, int)

Renders the current view window of the LayerManager at the
specified location.

void remove(Layer) Removes the specified Layer from this LayerManager.

void setViewWindow
(int, int, int, int)

The first and second arguments establish the upper left corner of the
view window. The last two arguments set the width and height.

This page intentionally left blank

The Game API and Game
Implementation

This chapter uses a number of the Game API classes and provides a rudimentary

but fairly complete game called Diamond Dasher. This is also the final chapter of

this book, so it represents the culmination of the lessons this volume has to

offer. Diamond Dasher incorporates relatively few of the classes explored during

the course of this book, but it leaves open a number of opportunities for

enhancement. By examining the way the class is implemented, you can put

yourself in an excellent position for creating any number of modifications.

This can be done fairly readily by, for example, changing the background

or using different resource files to create the background. You can also add

extra key options so that the player can control the avatar more directly. The

lessons provided in previous chapters can be of great value in these and other

respects.

Diamond Dasher
Diamond Dasher is a game that incorporates a number of the MIDP classes you

have examined in previous chapters, pulling them together to create a game that

involves guiding a seeking sprite as it explores a mine in search of diamonds. The

diamonds are generated randomly, and to win the game, the seeker must find a

given number of them before the allotted time expires. The number of diamonds

set as the goal varies with each instance of the game. When you work with the

433

game, you can increase the range of possible goals to make the gamemore difficult.

The default settings are low largely to make the features of the game easier to test.

Diamond Dasher uses three primary classes, DasherStart, DasherCanvas, and

DasherSprite. A fourth class, DTimerTask, is an inner class of DasherCanvas. Use

of an inner class for the timer cuts down on the number of files, but since the

game timer is closely coupled with the DasherCanvas class, it makes sense to

implement the two classes as a single working unit.

Figure 15.1 provides a rough class diagram of the components of DiamondDasher.

For example, the DasherCanvas class is composed of an instance of the Layer-

Manager class, as is the DasherSprite class.

The arrow pointing to the GameCanvas box from the DasherCanvas box indi-

cates that the DasherCanvas class extends the GameCanvas class. The lines tipped

by open circles indicate implementation of an interface, and in this case

the DasherCanvas and DasherSprite classes implement the Runnable interface.

434 Chapter 15 n The Game API and Game Implementation

Figure 15.1
Diamond Dasher allows you to use three primary classes, along with one inner class, to explore the
capabilities offered by four of the Game API classes.

DasherStart 435

The line tipped by the circle that contains a plus sign indicates that DTimerTask is

an inner class of the DasherCanvas class.

The structure of the game is not as compact as it might be, but spreading it out

makes it easier to examine for learning purposes. For example, duplicate use of

the Runnable interface and the LayerManager class makes it possible to set up

threads to support different animated Sprite objects and to create fairly involved

collision effects. Together, the work of four of the Game API classes, Sprite,

GameCanvas, TiledLayer, and LayerManager, allows you to gain a sense of the ways

that you can use the Game API. Only the Layer class of the Game API is not used.

DasherStart
The DasherStart class provides the entry point of the game. Its primary functions

are to create instances of the Display and DasherCanvas classes and to invoke the

start() method of the DasherCanvas object. You can find the code for the

DasherStart class in the Chapter 15 code folder. There are two copies, one in

the NetBeans Chapter15MIDlets project, the other in a folder for standalone files.

Here is the code for the class.

/*
* Chapter 15 \ DasherStart.java
*
*/

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class DasherStart extends MIDlet{

private DasherCanvas dashCanvas;
private Display display;

// #1
public DasherStart(){
dashCanvas = new DasherCanvas("Diamond Dasher");

}
// #2

public void startApp(){
display = Display.getDisplay(this);
dashCanvas.start();
display.setCurrent(dashCanvas);

}
public void pauseApp(){
}

436 Chapter 15 n The Game API and Game Implementation

public void destroyApp(boolean unconditional){
}

}

The DasherStart class provides the entry point of the game, and its imple-

mentation involves routines you have dealt with in previous chapters. In the line

of code preceding comment #1 of the DasherStart class, you declare class

attributes of the DasherCanvas (dashCanvas) and Display types (display). The

dashCanvas attribute becomes the focus of the implementation of the constructor

of the DasherStart class, which follows comment #1. The DasherCanvas con-

structor takes one argument, the name of the game. You assign the new instance

of DasherCanvas to the dashCanvas attribute and then proceed, in the scope of the

startApp() method following comment #2, to call the Display::getDisplay()

method, which returns a reference to the current Display object.

You are then in a position to call the start() method of the DasherCanvas class.

This method is available to you because the DasherCanvas class implements the

Runnable interface. Having initiated the thread, you call the setCurrent()

method of the Display class to make the DasherCanvas object visible. When you

do so, Sprite objects are already in motion, and the seeker can begin acquiring

points, as Figure 15.2 shows.

DasherSprite
The DasherSprite class provides diamonds for Diamond Dasher. The diamonds

are randomly generated Sprite objects with lifetimes limited to a few seconds.

Manipulating the avatar to make contact with a diamond before it vanishes

allows the player of the game to earn points. Diamonds are found using collision

detection methods provided by the Sprite class. The code for the DasherCanvas

class can be found in the Chapter15MIDlets folder, in standalone and NetBeans

versions. The source files for the diamond (diamond.png) are also found in these

folders. Here is the code.

/*
* Chapter 15 \ DasherSprite.java
*
*/

import java.util.*;
import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.*;

DasherSprite 437

Figure 15.2
With the first view of the game, the Sprite objects are already in action.

public class DasherSprite implements Runnable{
// #1
private Sprite diamondSprite;
private Image diamondImage;
private DasherCanvas gameCanvas;
private LayerManager manager;
private Thread thread;
// #1.1
private int currentDiamonds;
private int diamondsFound;
// #1.2
private static final int MAX_DIAMONDS = 20;
private static final int SLEEP = 500;
private static final int SWTH = 10;
private static final int SHTH = 10;

// #2
public DasherSprite(DasherCanvas canvasUsed){

gameCanvas = canvasUsed;
manager = gameCanvas.getManager();

}

// #3
public void start() {

diamondImage = createImage("/diamond.png");
thread = new Thread(this);
thread.start();

}
// #4
public void run(){

try{
while(true){

randomDiamond();
thread.sleep(SLEEP);

}
}catch(Exception e){

System.out.println(e.toString()); }
}

// #5
private void randomDiamond(){

// #5.1
if(currentDiamonds == MAX_DIAMONDS){

return;
}
diamondSprite = new Sprite(diamondImage, SWTH, SHTH);
// #5.2
int randomDiamondX = gameCanvas.getRandom().nextInt(

gameCanvas.AREA_WIDTH);
int randomDiamondY =

(gameCanvas.FLOOR -
gameCanvas.getRandom().nextInt(

gameCanvas.MAX_HEIGHT)
- diamondSprite.getHeight());

// #5.3
if(randomDiamondX < gameCanvas.AREA_ORIGIN_X){

randomDiamondX = gameCanvas.CENTER_X;
}
if(randomDiamondY < (gameCanvas.FLOOR - gameCanvas.MAX_HEIGHT)){

randomDiamondY = gameCanvas.CENTER_Y;
}

// #5.4
diamondSprite.setPosition(randomDiamondX, randomDiamondY);

438 Chapter 15 n The Game API and Game Implementation

manager.insert(diamondSprite, 0);
currentDiamonds++;

}
// #6
public void checkForCollision(){

if(manager.getSize() == 2){
return;

}
for(int itr = 0; itr < (manager.getSize() - 2); itr++) {

if(gameCanvas.getSeekerSprite().collidesWith(
(Sprite)manager.getLayerAt(itr), true)){

manager.remove(manager.getLayerAt(itr));
currentDiamonds––;
diamondsFound++;

}
}

}

// #7
public Image createImage(String image){

Image locImage = null;
try{

locImage = Image.createImage(image);
}catch(Exception e){

System.out.println(e);
}
return locImage;

}

// #8

public int getDiamondsFound(){
return diamondsFound;

}
}// end of class

Definition and Construction
In the signature line of the DasherSprite class, you implement the Runnable

interface. Use of the Runnable interface obligates you to implement the start()

and run()methods, and these in turn enable to you to implement a Thread object

Definition and Construction 439

440 Chapter 15 n The Game API and Game Implementation

to control the behavior of the class objects, which must be defined distinctly from

the object that is composed of DasherSprite objects.

In the lines associated with comment #1 of the DasherSprite class, you declare 11

class attributes. The Sprite attribute (diamondImage) provides the container for

the Image attribute (diamondImage), and the two together furnish you with the

visual presence of diamonds. You also declare an attribute of the DasherCanvas

type (gameCanvas). This is used largely to acquire services the DasherCanvas class

provides, such as the dimensions of the display and random numbers. In addi-

tion to the DasherCanvas attribute, you make use of a LayerManager attribute,

which allows you to control the appearance of the diamond, and the Thread

attribute, mentioned previously, which enables you to separate the timing

behavior of the DasherSprite canvas from that of its containing class.

After declaration of the first five attributes, you attend to the attributes that either

track values as they change or establish constants. In the lines trailing comment

#1.2, the currentDiamonds attribute allows you to tell how many instances of the

Sprite object have been created, while the diamondsFound attribute enables you to

identify the number of such objects that have been found. Both of these attributes

are of the int type.

With respect to the constant values, you create attributes to control the max-

imum number of diamonds (MAX_DIAMONDS), the rate at which diamonds are

created (SLEEP), and the width (SWTH) and height (SHTH) of the sprite that

represents each diamond. The maximum number of diamonds is set at 20. The

rate of diamond creation is set at half a second (500 milliseconds). The width and

height of the Sprite object are both set at 10 pixels.

In the lines following comment #2, you define an overloaded version of

the DasherSprite constructor. The constructor takes one argument, of the

DasherCanvas type, which identifies the DasherCanvas object that contains

the DasherSprite object. The DasherSprite class is dependent overall on the

DasherCanvas class; this explicit show of dependency makes it clear that it is not

possible to separate the two classes without creating problems. A reference to the

containing class is assigned to the gameCanvas attribute, which is used repeatedly

to provide information about the containing object.

In addition to identifying the containing class, the constructor calls the get-

Manager() method of the DasherCanvas class. This is an accessor method that

allows the DasherCanvas class to use the same LayerManager that the DasherCanvas

class uses. The LayerManager object furnishes a number of services, one of the

most important of which is making it possible to detect collisions between the

diamond and the seeker entities. To generate the values discussed in this chapter,

see the sidebar, ‘‘Printing Attribute Values.’’

Diamond Production

The activity of creating a diamond is governed primarily by the start() and

run() methods. Defined in the lines associated with comment #2, the start()

method is a feature of the Runnable interface and is invoked as soon as an instance

of the DasherSprite class is instantiated. It performs two functions. The first is to

call the DasherSprite::createImage() method, which creates an Image object

from the information stored in the diamond.png file and assigns it to the diamond-

Image interface. The second is to create an instance of the Thread class, assign this

to the thread attribute, and then call the Thread::start() method to bring the

thread to life.

With respect to calling the createImage() method, the approach to creating

Image objects in this class definition resembles the approach you have seen in

previous chapters. This becomes evident in the lines trailing comment #7. The

createImage() method wraps the Image::createImage(), attending to the

definition of the try block necessitated by the use of the method directly from

the Image class.

After creating an instance of the Image class in the context provided by the

start() method, in the lines associated with comment #4 you proceed to define

the run() method, the primary purpose of which is to control the intervals at

which instances of diamonds are created. This is accomplished using a call to the

Thread::sleep()method. To make the call, you employ the thread attribute and

supply the SLEEP constant as an argument to the sleep() method. A new dia-

mond is created during each half-second cycle the sleep() method regulates.

To place the diamonds in the display area, within the scope of the run()method,

you call the randomDiamond() method, which is defined in the lines trailing

comment #5. The definition of this method involves four rudimentary activities.

The first, attended to in the lines following comment #5.1, involves preventing

diamonds from being created if the maximum number already exists. In other

words, at no time canmore diamonds appear in the display area than the number

you designate by the value you assign to the MAX_DIAMONDS attribute (20). The

number of existing diamonds is tracked using the currentDiamonds attribute. An

if selection statement tests one value against the other, and if the two values are

Definition and Construction 441

442 Chapter 15 n The Game API and Game Implementation

equal and the selection statement returns true, then the flow of the program does

not proceed beyond this point, because the return keyword is called to exit the

method.

If the selection statement does not return true, then the flow of the program

proceeds to the following line, where an instance of a Sprite object is created and

assigned to the diamondSprite attribute. The Sprite constructor takes three

arguments. The first is a reference to an Image object, provided by the diamond-

Image attribute. The second and third are the width and height of the Sprite

object, provided by the SWTH and SHTH constants.

Positioning Diamonds

Given the creation of the Sprite object, you then proceed to the second task of

the randomDiamond() method, which unfolds in the lines following comment

#5.2. Here you seek to create two random coordinate values, x and y, that can be

used to place the diamond within the area of the display that represents the area

of the cave. For the value of the x-coordinate, you call the getRandom()method of

the DasherCanvas class, which returns a reference to a Random object. Using the

Random object, you call the nextInt() method, and as an argument to the

nextInt() method use the AREA_WIDTH attribute of the DasherCanvas class, which

is set to a value of 160, as shown in Table 15.1. The value you obtain in this way

lies in the range extending from 0 up to 160, and you assign it to the random-

DiamondX identifier, which is locally defined.

Generating the value for the y-coordinate proves more complicated but involves

incorporating the same strategy. As shown in Figure 15.3, the area defined for the

height of the cave is given by the MAX_HEIGHT constant (64), and to make it so that

the diamonds always appear in places in which the seeker (or miner) sprites can

find them, they must be safely below the ceiling of the cave. To obtain this value,

you subtract the height of the diamond, a value returned by the getHeight()

method of the Sprite class, from the value provided by MAX_HEIGHT. The resulting

value is then assigned to the randomDiamondY identifier, which is also locally defined.

P r i n t i n g A t t r i b u t e V a l u e s

To view the values of the various attributes of the DasherCanvas class, remove the comments
from the reportSettings() method. The reportSettings() method is defined in association
with comment #15 in the DasherCanvas class. Here is the code for the method:

private void reportSettings(){
System.out.println("AREA_HEIGHT:\t\t" + AREA_HEIGHT);
System.out.println("AREA_ORIGIN_X:\t\t" + AREA_ORIGIN_X);

System.out.println("AREA_ORIGIN_Y:\t\t" + AREA_ORIGIN_Y);
System.out.println("AREA_WIDTH:\t\t" + AREA_WIDTH);
System.out.println("CAVE_HEIGHT:\t\t" + CAVE_HEIGHT);
System.out.println("CENTER_X:\t\t" + CENTER_X);
System.out.println("CENTER_Y:\t\t" + CENTER_Y);
System.out.println("Dasher Canvas Height:\t" + getHeight());
System.out.println("Dasher Canvas Width:\t" + getWidth());
System.out.println("DMD_RANGE:\t\t" + DMD_RANGE);
System.out.println("FLOOR:\t\t\t" + FLOOR);
System.out.println("jumpHeight:\t\t" + jumpHeight);
System.out.println("MAX_HEIGHT:\t\t" + MAX_HEIGHT);
System.out.println("MIN_DIAMOND:\t\t" + MIN_DIAMONDS);
System.out.println("SKR_HEIGHT :\t\t" + SKR_HEIGHT);
System.out.println("SKR_WIDTH:\t\t" + SKR_WIDTH);
System.out.println("TILE_HEIGHT:\t\t" + TILE_HEIGHT);
System.out.println("TILE_WIDTH:\t\t" + TILE_WIDTH);
System.out.println("TCOLS:\t\t\t" + TCOLS);
System.out.println("TROWS:\t\t\t" + TROWS);

}

Representative values you see generated by this method appear in the Value column of Table 15.1.
You can find this method at the end of the DasherCanvas class, covered in the next section.

To include this method in your program, remove the comments from the call to the report-

Settings() method, which occurs at the last line of the DasherCanvas constructor. Discussion
of the values the method prints is provided throughout the current chapter.

Definition and Construction 443

Figure 15.3
Positioning diamonds involves generating random values that place them in the area of the cave.

444 Chapter 15 n The Game API and Game Implementation

Table 15.1 DasherSprite and DasherCanvas Values

Attribute Value Description

AREA_HEIGHT 160 The height of the game rectangle.

AREA_ORIGIN_X 40 The x-coordinate position in the display that designates
the upper left corner of the rectangle used for the active
game.

AREA_ORIGIN_Y 64 The y-coordinate position in the display that designates
the upper left corner of the rectangle used for the active
game.

AREA_WIDTH 160 The width of the rectangle used for the active game. This
distance leaves 40 pixels on the left and right sides of the
rectangle.

CAVE_HEIGHT 64 The height of the area in which the seeker or dasher can
find diamonds.

CENTER_X 120 The distance from the left margin of the display to the
center of the game rectangle.

CENTER_Y 144 The distance from the top of the display to the
approximate horizontal center of the game rectangle.

DasherCanvas Height 272 The height of the display area as obtained by the
Canvas::getHeight() method.

DasherCanvas Width 240 The width of the display area as obtained by the
Canvas::getWidth() method.

DMD_RANGE 30 The value used to set the range of random numbers that
determines how many diamonds must be found for the
game to be won.

FLOOR 160 The distance from the top to the bottom of the display.

jumpHeight 64 A varying value that is used to change the height to
which the seeker moves as the game is played.

MAX_HEIGHT 64 The maximum height the seeker or dasher can climb
when seeking diamonds.

MIN_DIAMONDS 20 The minimum number of diamonds to be generated
during a play session.

SKR_HEIGHT 10 The height of the Sprite or Image that represents the
seeker or dasher.

SKR_WIDTH 10 The width of the Sprite or Image that represents the
seeker or dasher.

TILE_HEIGHT 32 The height of each tile in the TiledLayer object.

TILE_WIDTH 32 The width of each tile or cell in the TiledLayer object.

TCOLS 6 The number of columns in the TiledLayer object.

TROWS 6 The number of rows in the TiledLayer object.

See the sidebar ‘‘Printing Attribute Values’’ for a summary of the work of the reportSettings()
method, which is a part of the interface of the DasherCanvas class.

As an extension of the activity involved in generating x- and y-coordinate values,

you also make certain that the values you use do indeed place the diamonds in

the area of the cave. To accomplish this, you employ two selection statements.

Again referring to Table 15.1, the first selection statement, immediately following

comment #5.3, assigns the value of CENTER_X (120) to the randomDiamondX

identifier if the randomly generated value places the diamond outside and to the

left of the cave area. On the other hand, the selection statement assigns the value

CENTER_Y to randomDiamondY if the randomly generated value places the diamond

above the top of the cave.

Having taken measures to ensure that the diamonds appear only in the area of the

cave, in the lines associated with comment #5.4 you call the Layer: :setPosition()

method, which the Sprite class inherits from the Layer class. Using this method,

you assign the values of randomDiamondX and randomDiamondY to the diamondSprite

object. To make the diamond visible, you call the insert() method employing

the LayerManager attribute that you have defined using the DasherCanvas object. The

insert() method takes two arguments. The first is a reference to the Sprite to be

made visible. The second is the index that designates the Layer object you want to

associate with the Sprite. In this case, only one layer is used, so a value of 0 suffices.

The final action in the definition of the randomDiamond() method involves

incrementing the count of the diamonds. To accomplish this, you increment the

currentDiamonds attribute. As mentioned previously, with reference to comment

#5.1, this attribute is continuously evaluated against the value of MAX_DIAMONDS to

determine whether new diamonds are to be created.

Collisions

In the lines associated with comment #6, you define the checkForCollision()

method. This method is called in the scope of the DasherCanvas class as part of the

public interface of the DasherSprite class. It allows the DasherSprite object to

determine when diamonds have been detected and remove them from the dis-

play. To define this method, you start by accessing the LayerManager attribute

(manager) that represents the DasherCanvas LayerManager object. To identify the

number of sprites, you call the LayerManager::getSize() method, which returns

an integer value establishing the total number of sprites. The background and the

seeker sprites must be excluded from collision detection actions involving

deletion, so you begin by using a selection statement to ensure that no deletions

occur when there are only two objects.

Definition and Construction 445

From there, you move on to iterate through the LayerManager object to discover

the Sprites that the seeker collides with. This approach to collision detection

involves visiting every Sprite contained by the DasherCanvas during each

invocation of the checkForCollision()method. To make this possible, as part of

an if selection statement, you call the getSeekerSpirte() method of the

DasherCanvas class, which returns a reference to the diamond seeker avatar. You

then use the returned reference to call the Sprite::collidesWith() method,

which returns true if it detects a collision.

The collidesWith() method takes as an argument a reference to a Sprite object.

To obtain references to a Sprite object, you use the manager attribute to call the

getLaterAt()method, which returns each Layer in the LayerManager object. Since

the Sprite class is a subclass of the Layer class, you find all the Sprite objects in the

layer. At the same time, however, you must cast the Layer object as a Sprite object

so that it is suitable as an argument to the collidesWith() method.

Given the detection of a Sprite object, you call the LayerManager::remove()

method. As an argument to the method, you once again call the getLayerAt()

method. The instance of the Sprite identified by the current value of itr is then

deleted. Having deleted a sprite, you decrement the value of currentDiamonds

while incrementing the value of diamondsFound. To make it possible for the value

of diamondsFound to be retrieved by the DasherCanvas class to create a score, you

create the getDiamondsFound() accessor method, which appears in the lines fol-

lowing comment #8.

DasherCanvas
The DasherCanvas class is the largest class in the set of classes that make up the

Diamond Dasher game. This class allows you to create a Sprite object that dashes

after diamonds (giving the game its name). A TiledLayer object furnishes the

background, which consists of a set of tiles that provide a crude representation of

a cave, along with a number of lines, created using the Graphics::drawString()

method, that furnish the score of the game and reports about its progress. The

DasherCanvas class contains one inner class, DTimerTask, which specializes the

TimerTask class and serves to define a Timer object used to control the duration of

the game. The class also provides a Thread object, which serves to govern the

frame rate of the game. You can find the DasherCanvas class in the source code

folder for Chapter 15. Two versions are provided, one in the Chapter15MIDlets

NetBeans folder, the other in the standalone files folder. The two resource files

446 Chapter 15 n The Game API and Game Implementation

the class requires, backtiles.png and dasher.png, reside in the folders along with

the source code files. Here is the code for the DasherCanvas class; discussion of

specifics follow.

/*
* Chapter 15 \ DasherCanvas
*
*/

import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.*;
import java.util.*;
import java.io.*;

public class DasherCanvas extends GameCanvas
implements Runnable{

// #1
private Image seekerImg;
private Image backgroundImg;
private Sprite seekerSprite;
private DasherSprite dasherSprite;
private Graphics graphics;
private TiledLayer background;
private LayerManager manager;

// #1.1
private int seekerX;
private int seekerY;
private int moveX = 1;
private int moveY = 1;
private boolean up = true;

// #1.2
public final int CENTER_X = getWidth()/2;
public final int CENTER_Y = getHeight()/2;
public final int AREA_WIDTH = 160;
public final int AREA_HEIGHT = 160;
public final int AREA_ORIGIN_X = (getWidth() - AREA_WIDTH)/2;
public final int AREA_ORIGIN_Y = (getHeight() - AREA_HEIGHT)/2;
public final int CAVE_HEIGHT = 64;
public final int FLOOR = AREA_ORIGIN_Y

+ AREA_HEIGHT - CAVE_HEIGHT;
public final int MAX_HEIGHT = 64;

DasherCanvas 447

// #1.3
public final int TILE_HEIGHT = 32;
public final int TILE_WIDTH = 32;
public final int TCOLS = 5;
public final int TROWS = 5;
public final int SKR_WIDTH = 10;
public final int SKR_HEIGHT = 10;
private int jumpHeight = MAX_HEIGHT;

// #1.4
public final int DMD_RANGE = 30;
public final int MIN_DIAMONDS = 20;
private int diamondsNeeded;
private boolean winner;
public Random random;
private DTimerTask clock;
private Timer gameTimer;
private Thread runner;
private boolean endSearch = false;
public final int LTEXT = AREA_ORIGIN_X;

public DasherCanvas(String title){
super(true);
setTitle(title);
reportSettings();

}

// #2
public void start(){

seekerX = CENTER_X;
seekerY = FLOOR;
winner = false;
random = new Random();
diamondsNeeded = random.nextInt(DMD_RANGE);
if(diamondsNeeded < MIN_DIAMONDS){

diamondsNeeded = MIN_DIAMONDS;
}

// #2.1
seekerImg = createImage("/dasher.png");
seekerSprite = new Sprite(seekerImg, SKR_WIDTH, SKR_HEIGHT);
seekerSprite.defineReferencePixel(SKR_WIDTH/2, SKR_HEIGHT);

448 Chapter 15 n The Game API and Game Implementation

manager = new LayerManager();
manager.append(seekerSprite);

createBackground();
// #2.2
manager.append(background);
dasherSprite = new DasherSprite(this);
dasherSprite.start();

runner = new Thread(this);
runner.start();

}

// #3
public void run(){

clock = new DTimerTask(30);
gameTimer = new Timer();
gameTimer.schedule(clock, 0, 1000);
while(endSearch == false){ // loop

confirmStatus();
getUserActions();
updateScreen();
try {

Thread.currentThread().sleep(30);
} catch(Exception e) {}

}
showGameScore();

}

// #4
private void makeGameScreen(){

graphics = getGraphics();
graphics.setColor(100, 149, 237);
graphics.fillRect(0, 0, getWidth(),

getHeight());
showStatus();

}

// #5
private void createBackground(){

backgroundImg = createImage("/backtiles.png");
background = new TiledLayer(TCOLS, TROWS, backgroundImg,

TILE_WIDTH, TILE_HEIGHT);
int[] tiles = makeTileCells();

DasherCanvas 449

// #5.1
int itr = 0;
for(int row = 0; row < TROWS; row++){

for(int col = 0; col < TCOLS; col++){
background.setCell(col, row, tiles[itr++]);

}
}
background.setPosition(AREA_ORIGIN_X, AREA_ORIGIN_Y);

}

// # 5.2
private int[] makeTileCells(){

int[] cells = {
3, 3, 3, 3, 3, // top
1, 1, 1, 1, 1, // cave
1, 1, 1, 1, 1, // cave
2, 2, 2, 2, 2, // floor layer
4, 4, 4, 4, 4 // bottom layer
};

return cells;
}

// #5.3
Image createImage(String fileName){

Image tempImage = null;
try{
tempImage = Image.createImage(fileName);

}catch(Exception ioe){
System.out.println(ioe.toString());

}
return tempImage;

}

// #6
private void confirmStatus(){

if(clock.getTimeLeft() == 0) {

endSearch = true;
return;

}
dasherSprite.checkForCollision();

}

450 Chapter 15 n The Game API and Game Implementation

// #7
private void getUserActions(){

int keyState = getKeyStates();
findXBoundry(keyState);
findYBoundry(keyState);

}

// #8
private void updateScreen(){

makeGameScreen();
seekerSprite.nextFrame();
seekerSprite.setRefPixelPosition(seekerX, seekerY);
manager.paint(graphics, 0, 0);
flushGraphics();

}

// #9
private void showStatus(){

graphics = getGraphics();
int timeLeft = clock.getTimeLeft();
if(timeLeft < 6){

if((timeLeft % 2) == 0){
graphics.setColor(0xff0000);

}else{
graphics.setColor(0x000000);

}
}
// #9.1
graphics.drawString("Time remaining: " + timeLeft + " seconds",

LTEXT, 225, 0);
graphics.drawString("To win: " + diamondsNeeded,

LTEXT, 238, 0);
graphics.drawString("Number now: "

+ dasherSprite.getDiamondsFound(),
LTEXT, 50, 0);

// #9.2
int goal = 0;
if(dasherSprite.getDiamondsFound() >= diamondsNeeded){

graphics.setColor(0xf5f5f5);
graphics.drawString("You win!!!! ******",

LTEXT, 40, 0);
}

}

DasherCanvas 451

// #10
private void showGameScore(){

graphics.setColor(0xf5f5f5);
graphics.fillRect(0, CENTER_Y - 20, getWidth(), 40);
graphics.setColor(0x000000);
graphics.drawString("You have found " +

dasherSprite.getDiamondsFound()
+ " diamonds.",
CENTER_X, CENTER_Y,
Graphics.HCENTER | Graphics.BASELINE);

flushGraphics();
}

// #11
private void findXBoundry(int keyState){

if((keyState & LEFT_PRESSED) != 0) {
seekerX = Math.max(AREA_ORIGIN_X

+ seekerSprite.getWidth()/2,
seekerX - moveX);

}
if((keyState & RIGHT_PRESSED) != 0) {

seekerX = Math.min(AREA_ORIGIN_X + AREA_WIDTH
- seekerSprite.getWidth()/2,

seekerX + moveX);;
}

}

// #12
private void findYBoundry(int keyState){

// #12.1
if(up){//up

if(seekerY > FLOOR - jumpHeight
+ SKR_HEIGHT){

seekerY -= moveY;
}
if(seekerY == FLOOR - jumpHeight

+ SKR_HEIGHT){
seekerY += moveY;
up = false;

}//end else if
}else{
// #12.2

if(seekerY < FLOOR){

452 Chapter 15 n The Game API and Game Implementation

seekerY += moveY;
}
if(seekerY == FLOOR){

int jumpTry = random.nextInt(MAX_HEIGHT + 1);
if(jumpTry > SKR_HEIGHT){

jumpHeight = jumpTry;
}//end if

seekerY -= moveY;
up = true;

}
}// end else

}//end calculateSeekerY

// #13
public Sprite getSeekerSprite(){

return seekerSprite;
}
public LayerManager getManager(){

return manager;
}
public Random getRandom(){

return random;
}
// #14
//===
//Inner class for the timer
public class DTimerTask extends TimerTask{

int timeLeft;
public DTimerTask(int maxTime){

timeLeft = maxTime;
}
public void run(){

timeLeft––;
}
public int getTimeLeft(){

return timeLeft;
}

}// End inner class
//===

// #15

DasherCanvas 453

// Generate values for testing and exploration
private void reportSettings(){

System.out.println("AREA_HEIGHT:\t\t" + AREA_HEIGHT);
System.out.println("AREA_ORIGIN_X:\t\t" + AREA_ORIGIN_X);
System.out.println("AREA_ORIGIN_Y:\t\t" + AREA_ORIGIN_Y);
System.out.println("AREA_WIDTH:\t\t" + AREA_WIDTH);
System.out.println("CAVE_HEIGHT:\t\t" + CAVE_HEIGHT);
System.out.println("CENTER_X:\t\t" + CENTER_X);
System.out.println("CENTER_Y:\t\t" + CENTER_Y);
System.out.println("Dasher Canvas Height:\t" + getHeight());
System.out.println("Dasher Canvas Width:\t" + getWidth());
System.out.println("DMD_RANGE:\t\t" + DMD_RANGE);
System.out.println("FLOOR:\t\t\t" + FLOOR);
System.out.println("jumpHeight:\t\t" + jumpHeight);
System.out.println("MIN_DIAMOND:\t\t" + MIN_DIAMONDS);
System.out.println("MAX_HEIGHT:\t\t" + MAX_HEIGHT);
System.out.println("SKR_WIDTH:\t\t" + SKR_WIDTH);
System.out.println("SKR_HEIGHT :\t\t" + SKR_HEIGHT);
System.out.println("TILE_HEIGHT:\t\t" + TILE_HEIGHT);
System.out.println("TILE_WIDTH:\t\t" + TILE_WIDTH);
System.out.println("TCOLS:\t\t\t" + TCOLS);
System.out.println("TROWS:\t\t\t" + TROWS);

}
}// End class

Construction and Definition
In the signature line of the DasherCanvas class, you begin the definition of the class

by extending the GameCanvas class and implementing the Runnable interface.

Extension of the GameCanvas class provides you with a number of useful services

that have been explored in previous chapters and continue to furnish topics for

discussion in the current context. The Runnable interface allows you to implement

start() and run() methods, and using Timer and Thread objects, you make use of

these services to control the speed of the game and to define the challenge the

player of the game encounters. In the lines immediately following comment #1,

you attend to the declaration of attributes of the Image, Sprite, DasherSprite,

Graphics, TiledLayer, and LayerManager types. The attribute of the Sprite type

(DasherSprite) is the visible dasher (or seeker) image that moves around the cave

seeking diamonds. The attribute of the DasherSprite type (dasherSprite) provides

the diamonds. All of the functionality needed to generate, detect, and remove the

454 Chapter 15 n The Game API and Game Implementation

diamonds is included in the DasherSprite class definition, so when you create an

instance of the DasherSprite class, you need to do little more with it.

In the lines following comment #1.1, attributes of the int type are declared, and

these help you track and move the seekerSprite object. To track this object, you

audit the x- (seekerX) and y- (seekerY) coordinates associated with it. These

coordinates are by default associated with the upper left corner of a Sprite object,

but by using the defineReferencePixel() method, you can change this. To control

the movement of the seekerSprite object, you define the moveX and moveY attri-

butes, which allow the object to move one pixel at a time if you press the arrow

keys.

The attributes defined in association with comment #1.2 are used to manage the

objects within the display area and to translate the dimensions of the display into

the local world coordinates of the central rectangle. The display measures

240 pixels wide by 272 pixels high, while the central rectangle measures 160 pixels

by 160 pixels (see Figure 15.3 and Table 15.1, shown previously). To find the

center of the display area, you use the getWidth() and getHeight() methods of

the DasherCanvas class and divide each of the returned values by two. You assign

the results to the CENTER_X and CENTER_Y attributes.

To find a coordinate value that can be used to establish the center of the game

rectangle, you first define the AREA_WIDTH and AREA_HEIGHT using values of 160.

After that, you subtract the width and height dimensions of the game area from

the width and height of the display and each value by 2, assigning the results to

AREA_ORIGIN_X and AREA_ORIGIN_Y. Following the definition of the two game

origin values, you define the height of the play area (CAVE_HEIGHT) at 64. You can

then set the lower boundary of the play area (FLOOR). This involves subtracting

the height of the play area from the height of the game area. You also set the

maximum height to which the seeker can jump (MAX_HEIGHT) at 64.

After establishing the dimensions of the play area, you then declare and initialize

a number of attributes that enable you to define the Image, TiledLayer, and Sprite

properties of the seeker sprite and the background. This activity begins in the lines

following comment #1.3, where you first set the width and height of the tiles used

for the background. Figure 15.4 illustrates the relationships between these values.

Each of the tiles in the Image object used for the background has dimensions of 32

by 32 pixels. The TILE_HEIGHT and TILE_WIDTH attributes are used to set these values.

There are four such tiles. In the TiledLayer object, you create a cell grid consisting

of 5-by-5 squares. The TCOLS and TROWS attributes set these values. To set the size of

Construction and Definition 455

the seekerSprite object, you use the SKR_WIDTH and SKR_HEIGHT attributes, both set

to 10. To track the distance the seeker jumps, you create the jumpHeight attribute,

which is set at the same value of MAX_HEIGHT.

The final set of attributes, following comment #1.4, allows you attend to Timer,

Thread, and random number events. To set the range of diamonds the game can

ask the player to find, you set the DMD_RANGE attribute. To set the minimum

number of diamonds, you set the MIN_DIAMONDS attribute. The diamondsNeeded

attribute allows you to determine when the player has collected enough dia-

monds to win. The winner attribute is used to indicate when the player has won.

To generate a value to use to set the number of diamonds a player must collect to

win the game, you declare the random attribute. The duration of the game is set

using the clock attribute, which is of the DTimerTask type, which is defined in an

inner class. To control the speed of the game, you declarer the runner attribute,

which is of the Thread type. To determine whether the game is still in progress,

you declare the endSearch attribute. As a final measure, the LTEXT attribute is

declared. This is used to establish the left margin of the lines of text used to

display the score and related information about the game.

456 Chapter 15 n The Game API and Game Implementation

Figure 15.4
The Sprite tile and TiledLayer cell dimensions allow you to create the background of the game world.

Starting the Game

In the lines trailing comment #2, you define the start() method. The start()

method is called by the DasherCanvas object as soon as it is initiated. You use the

CENTER_X and FLOOR attributes to define the initial position associated with the

seekerSprite object. You then set the initial objective of the game. To accomplish

this, you use the random attribute to call the Random::nextInt() method, which

takes the maximum range set by DMD_RANGE as an argument. You assign the

returned random value to the diamondsNeeded attribute. In the lines immediately

following, you create a selection statement which resets the value of diamonds-

Needed if it has been set to less than the game minimum (MIN_DIAMONDS).

In the lines following comment #2.2, you call the createImage() method to

provide the game with a seeker image (which is provided by the dasher.png file).

The createImage() method takes one argument, which is of the String type. It is

defined in the lines associated with comment #5.1. Its main characteristic is that

it wraps the Image::createImage() method, making it unnecessary to repeatedly

create a try block to handle the Exception message the method is defined to

throw if it fails to find a valid file. Using the value returned by the createImage()

method, you define the seekerImg attribute, which you employ as an argument to

the constructor of the Sprite class.

The Sprite constructor takes three arguments. The first is the Image object used

to define the visual representation of the Sprite object. The last two arguments

provide the width and height of the Sprite objects, and for these values you

employ the SKR_WIDTH and SKR_HEIGHT attributes. You assign the instance of the

Sprite class to the seekerSprite attribute, and to finish off the definition of this

attribute, you call the defineReferencePixel() method. This method resets

values of the x-y coordinate pair so that they no longer identify the upper left

corner of the Sprite object. Instead, the position is now set as the middle of the

bottom border of the Sprite object.

Given the instance of a Sprite object, you then create an instance of a Layer-

Manager object, which you assign to the manager attribute. The LayerManager class

provides a container for Sprite objects. You use the append() method to store

Sprite objects in a LayerManager object. Each Sprite object you store is identified

using an index, so that with the first call of the append() method you store the

seekerSprite object in the manager object and associate it with index 0.

You then call the createBackground() method, which is defined in the lines

associated with comment #5. The createBackground() method first creates a

Construction and Definition 457

458 Chapter 15 n The Game API and Game Implementation

background Image object, which is assigned to the backgroundImg attribute. This

attribute is then used as an argument to the constructor of the TiledLayer class.

The constructor takes five arguments. The first two are the number of rows and

columns you want to define for the TiledLayer object. The second is the Image

object that provides the tiles to the TiledLayer object. The final two objects

establish the width and height of the cells in the in the TiledLayer object. Refer to

Figure 15.4, shown previously, to review these values.

To create a configuration of cells to use for the TiledLayer object you call the

makeTileCells() method, which is defined in the lines following comment #5.2.

In this method, a one-dimensional array of integers is used to define five rows

of values. On the first row, tile 3 of the image is to be used. On the next two rows,

tile 1 is to be used. This is the tile that is lightest in color, as Figure 15.4 illustrates,

so it makes the diamonds easiest to see. For the bottom two rows you use tiles 2

and 4, which provide increasingly darker background colors.

The makeTileCells() returns a reference to an array of the int type, which in the

lines following comment #5.1 you assign to the tiles array and use in a for

repletion block that iterates through all the cells in the TiledLayer object and

assigns tiles to them. The approach used involves using the itr identifier to identify

the successive tiles identified in the tiles array while employing the row and col

identifiers in the for statements to identify the specific cells in the TiledLayer

object. These range from 1 to 4, as Figure 15.4 illustrates. After placing the tiles in

the TiledLayer object, you then call the setPosition() method to position the

TiledLayer object using the AREA_ORIGIN_X and AREA_ORIGIN_Y values.

To return to the start()method, in the lines following comment #2.2, you again

call the append method of the LayerManager object to assign the background

object to the manager object. The index for the layer object is 1. You thus have a

way of distinctly identifying the seeker and background Sprite objects. The first

resides at layer 0. The second resides at layer 1.

Having appended the background Sprite object, you then create an instance of the

DasherSprite class and assign it to the dasherSprite attribute. This single call

initiates the creation and random distribution of diamonds. The diamonds you

create in this way continue to appear in the active game area until they reach the

maximum number you set for them. You also call the start() method associated

with the DasherSprite class, which uses its own thread to regulate its behavior as it

produces diamonds. Having started the DasherStart thread, you can then create an

instance of the Thread class to assign to the runner attribute, which is used start and

control the game.

Running the Game

In the lines following comment #3 of the DasherCanvas class, within the scope of

the run() method, you create an instance of the DTimerTask class. This class is

defined in the lines following comment #14 and provides a constructor that sets

the maximum time allowed for the game. This value is assigned to the timeLeft

attribute. It also defines a run() method so that with each call by the Ticker

object to the DTimerTask object, the value of timeLeft is decremented by one. To

supplement the work of the DTimerTask class, an accessor method, getTime-

Left(), returns the value of timeLeft.

Back in the scope of the run() method following comment #3, you create an

instance of the Timer class and assign it to the gameTimer attribute, which you

then use to call the schedule() method. This method takes as its first argument

the instance of the DTimerTask class (clock). The second argument establishes

that there is no delay in the action of the Timer object. The last argument sets the

period of the Timer object at 1000 milliseconds (one second).

In the while loop inside the run() method, the confirmStatus(), getUser-

Actions(), and updateScreen() methods are called. The confirmStatus()

method is defined in the lines following comment #6. Its responsibilities are to

check on the game ticker by using the clock attribute to call the getTimeLeft()

method and to determine whether the time allotted for the game has been

decremented to 0. If the time has reached 0, then the endSearch attribute is set to

true, and the game is ended. If time remains, then the checkForCollision()

method of the DasherSprite class is called. As was pointed out in the discussion

of the DasherSprite class, this method detects collisions between the Sprite

objects representing the seeker and the diamonds.

The definition of the getUserAction()method follows comment #7. This method

calls the getKeyStates() method, which returns the unique identifier associated

with the keys used to play the game (which include the SELECT button and the

keyboard game keys). The key value is then processed by the findXBoundary()

and findYBoundary() methods.

Boundaries and Random Jumps

The findYBoundary()method receives its definition in the lines trailing comment

#11, where two if selection statements are used to process the value returned by

the getKeyStates() method. Each of the selection statements first tests for the

value of either the left arrow key or the right arrow key (LEFT_PRESSED or

Construction and Definition 459

RIGHT_PRESSED). It then uses the Math::max() and Math::min() methods to

determine whether to move the seeker object to the right or left within the active

game area. For the LEFT_PRESSED motion, the value used to set the position of

the seeker object involves taking the maximum of the two values. The first is half

the width of the Sprite object added to the value of the x-coordinate of the active

game area. The second is the sum of the current x-coordinate assigned to the

seeker and the distance defined by moveX attribute (1). The max()method returns

the larger of these two values.

Movement to the right (RIGHT_PRESSED) takes the same approach, except that

the Math::min() method is used. The first argument to the min() method is

arrived at by taking the sum of the x-coordinate value of active game area and the

width of the game area and subtracting half the width of the seeker object from it.

The second argument to the min() method is the sum of the current seeker

position and the value of moveX. The min() method returns the smaller of these

two values.

The work of the findYBoundary()method is much more complex than that of the

findXBoundary() method: rather than moving the seeker object in a determined,

incremental fashion, it moves it in a random way. The definition of the findY-

Boundary()method begins with comment #12.1, where an if selection statement

checks whether the value of up is set to true. If so, then the flow of the program

enters this block. Inside the block, an inner selection statement determines

whether the position of the seeker object is greater than the value of the bottom of

the active game area minus the sum of jumpHeight (set initially at 64, the value of

MAX-HEIGHT, but then generated randomly) and the height of the seeker (10). If so,

then it continues to move upward. On the other hand, a second inner selection

statement audits whether the seeker object has reached the top. If so, it is sent on

a downward path, and the value of up is set to false.

In the lines associated with comment #12.2, within an else block, the first if

selection statement evaluates whether the seeker object has reached its maximum

point of descent. If not, then it continues on its way downward. On the other

hand, the second inner if selection statement evaluates to true if the seeker

object has reached its maximum point of descent. If so, then a random number is

generated for the jumpHeight attribute. To assign the random value to jumpHeight

(which is initially set to MAX_HEIGHT), the random value is first assigned to the

local jumpTry identifier. If the value of jumpTry is greater than the height of the

seeker object, then it is assigned to jumpHeight attribute, replacing the previously

460 Chapter 15 n The Game API and Game Implementation

assigned value. If not, then the previous value remains unchanged. After that, the

flow of the program continues, and the movement of the seeker object is changed

so that it begins to move upward. The up attribute is set to true. With the next

cycle of the game, then, the up block is entered, and the value of jumpHeight

regulates how far the seeker object can climb.

Updating

As mentioned previously, within the while loop of the DasherCanvas::run()

method (comment #3), the updateScreen() method is called. This method is

defined in the lines associated with comment #8. The updateScreen() method

possesses four basic responsibilities. The first is to call the makeGameScreen()

method, which is defined in the lines trailing comment #4. In the definition of

this method, you begin by creating a colored rectangle to fill the display. The

setColor() and fillRect() methods are used to accomplish this task. For the

first two of the four arguments of the fillRect() method, you provide a coor-

dinate pair (0,0) to set the origin of the background rectangle. The third and

fourth of its arguments set the lower right corner of the rectangle using a

coordinate pair defined by the width and height of the display area.

Having set the background color of the display area, you call the showStatus()

method. To define this method, you first use the clock attribute to call the get-

TimeLeft() method. This method returns the amount of time left for the game,

which you assign to a local identifier, timeLeft. You then assess the value assigned

to the timeLeft identifier, making the message blink if the number of seconds is

less than 6.

In the lines following comment #9.1, you call the drawString() method three

times, first to display the time remaining, next to display the number of dia-

monds that must be found to win the game, and last to show the current number

of diamonds found. Then, in the lines associated with comment #9.2, you use an

if selection statement to determine whether the number of diamonds found

equals or exceeds the number of diamonds needed to win the game. As illustrated

by Figure 15.5, if the winning number has been reached, the game displays a

message reading ‘‘You win!!!! ������’’. You call the setColor() method to set the

color of this message so that it is lighter than the other messages.

Returning to the updateScreen()method (see comment #8), following the call to

the makeGameScreen() method, you use the seekerSprite object to call the

Construction and Definition 461

nextFrame() method. This method call has the effect of incrementing the tile of

the seekerSprite object by one. This causes the seekerSprite object to blink, as

Figure 15.6 illustrates.

In addition to calling the nextFrame() message, you also call the setRefPixel-

Position()method in the scope of the updateScreen()method. The effect of this

method is to position the coordinates of the seeker sprite used for collision

detection in the middle of the top boundary of the seekerSprite object. You use

the LayerManager object, manager, to call the LayerManager::paint() method.

The paint() method takes three arguments. The first is the Graphics object to be

painted. The second and third are the x- and y-coordinates that identify the

origin to be assigned to the graphics object. In this case, the Graphics object

affiliated with the current instance of the DasherCanvas class is used for the

first argument, and the origin is set in the upper left corner of the display. In this

way, the entire DasherCanvas area is painted. Following the call to the paint()

method, the flushGraphics()method is called to bring the objects set for display

into visibility.

462 Chapter 15 n The Game API and Game Implementation

Figure 15.5
The color of the winner message is lighter than that of the other messages.

Showing the Final Score

In the lines trailing comment #10, you show the final game banner, which lists the

total number of diamonds the player has discovered. As Figure 15.7 illustrates,

the final banner displays whether or not the player wins. To create the banner,

you first call the setColor() method to make the color of the banner off-white.

Next, you call the fillRect() method to create the banner. You then call the

setColor() method once again, setting the font color to black. All that remains

after that is to call the drawString() method, providing for its first argument a

message that incorporates the value returned by the getDiamonds()method of the

DasherSprite class. For the second and third arguments, which position the

message, you provide the CENTER_X and CENTER_Y values. For the final argument,

you use the OR operator to create an anchor value by joining the HCENTER and

BASELINE properties of the Graphics class. Finally, you call the flushGraphics()

method to bring the banner and its message to visibility.

Conclusion
In this chapter you reach the end of this book’s exploration of the MIDP classes

as they might be applied in the context of game development. Clearly, there is

much more to be said about the use of the MIDP classes. However, for intro-

ductory purposes, a discussion that keeps things simple is best. As pertains to any

Conclusion 463

Figure 15.6
One frame advances to another, causing a flicker.

work with Java class libraries, the documentation available on the Internet

remains your best resource with respect to fully exploring the capabilities the

classes offer. The most a book can do is put starter and other information in a

context that enables you to learn on your own. That has been the goal of this

book.

Making use of the Java Wireless Toolkit or the NetBeans IDE tremendously

augments your work with the MIDP, so I hope that in the course of reading this

book, you have been persuaded to start developing with one or both of these

tools. The hours you save by using such an IDE can be put toward extending your

explorations of the intricacies of the Java MIDP classes.

Clearly, this book might have begun with a discussion of the Game API or, given

an introduction of the fundamentals of the MIDP classes, made the Game API

its primary topic. This is, indeed, the approach used in many books currently on

the market. The approach here differs from those for a reason. Regardless of

proliferation of graphically oriented games developed for mobile devices,

opportunities still abound for developing text-based MIDlets that incorporate

game elements. Familiarity with the full range of the MIDP classes is the best

464 Chapter 15 n The Game API and Game Implementation

Figure 15.7
A banner is displayed to show the end of the game and provide summary information.

grounding for someone seeking to make the best use of the MIDP in all contexts

in which games might be developed.

Whatever avenue you follow after beginning work with the MIDP through a

book like this, the prospects are endless. Perhaps the most promising aspect of

programming using the MIDP is that with relatively little effort it is possible for

an isolated developer to create products that might be marketed on an entre-

preneurial basis. This is hardly ever the case with games developed for console

and PC games, where the efforts of many people are required. It is also the case

that the MIDP classes provide an excellent way to learn how to program games in

an educational context.

Conclusion 465

This page intentionally left blank

Scrolling Background

The effort you have put into the classes in this book’s 15 chapters may be

continued by developing games that involve scrolling backgrounds. Such a game

can be built using the framework established in Chapter 15, with the exception or

addition of a background that is set up to scroll through a number of tiles.

ScrollStart

The ScrollStart class is the entry point of a MIDlet that demonstrates a scrolling

background. Within the scope of the startApp() method, you create an instance

of the ScrollCanvas class and assign it to the game identifier, which is of the

ScrollCanvas type. You then use the getDisplay() method to invoke the current

instance of the Display class, which you use to call the setCurrent()method. The

setCurrent() method takes the game identifier as its sole argument. To initiate a

thread for the MIDlet, you use the constructor of the thread class and again use

the game identifier as an argument. The instance of the thread is returned

anonymously; using it, you call the start() method. The effect is to invoke the

run()method after the instance of the ScrollCanvas class is created. The code for

the ScrollStart class is in the source code folder for the Appendix. You can find

it in both the standalone and NetBeans project folders. Here is the code for the

class.

467

/*
* Appendix A \ ScrollStart.java
*
*
*/

import java.util.*;
import javax.microedition.lcdui.game.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class ScrollStart extends MIDlet{
public void startApp(){

ScrollCanvas game = new ScrollCanvas();
Display.getDisplay(this).setCurrent(game);
new Thread(game).start();

}

public void pauseApp(){
}

public void destroyApp(boolean unc){
}

}

ScrollCanvas
The ScrollCanvas class creates a tiled layer and then allows you to use a sequence

of index values to display its cells sequentially. In this way, a scrolling background

is created. This approach to a scrolling background is a simplified one. There

are more advanced techniques that produce a much more refined and smooth

motion. The approach used here is intended to provide a suitable starting point

for exploring how a background can be animated. Like the ScrollStart class, the

ScrollCanvas class is included in the NetBeans and standalone folders for

the Appendix. These folders also contain the backtiles.png file, which is the

source of the background tiles. Here is the code for the ScrollCanvas class.

/*
* Appendix \ ScrollCanvas
*
*
*/

468 Appendix n Scrolling Background

import java.util.*;
import javax.microedition.lcdui.game.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

// #1
class ScrollCanvas extends GameCanvas implements Runnable{

TiledLayer bkgnd = null;
Image tempImage = null;

int[] tileIndex = {1,2, 3, 4, 5, 6};
int cols;
int rows;

// #1.1
public void run(){

scrollTiles();
}

// #2
public ScrollCanvas(){

super(false);
System.out.println("width "+ getWidth());
Image bkgrndImage = createImage("/backtiles.png");
rows = getHeight()/240;

cols = getWidth()/120; // s
System.out.println("cols" + cols);

// #2.1
bkgnd = new TiledLayer(6, rows, bkgrndImage, 120, 240);
System.out.println("cols" + bkgnd.getColumns());
System.out.println("rows" + bkgnd.getRows());

}

// #3
private void scrollTiles(){

Graphics g = getGraphics();
int itr = 0;
while (true) {

bkgnd.setCell(0,0,tileIndex[itr++]);
bkgnd.setCell(1,0,tileIndex[itr++]);

if(itr==6){
itr = 0;

}
bkgnd.paint(g);

ScrollCanvas 469

flushGraphics();
try{
Thread.currentThread().sleep(200);

}catch (InterruptedException iex){
System.out.println(iex.toString());

}
}

}

public Image createImage(String file){
try{

tempImage = Image.createImage(file);
} catch (Exception exc){

exc.printStackTrace();
}
return tempImage;

}
}

Definition and Construction

In the lines associated with comment #1, you extend the GameCanvas class and the

Runnable interface. The Runnable interface enables you to implement the run()

and start() methods, which are necessary to support animated activities. Fol-

lowing the signature line, you declare attributes of the TiledLayer and Image

types. The Image object is the source of the background tiles. The TiledLayer

attribute allows you to manage the display of tiles. A third attribute is an array of

the int type, which stores values that designate the sequence in which you what

to display tiles (tileIndex).

How these three attributes work together becomes evident in the lines following

comment #2, where you call the getWidth() method to learn the width of the

ScrollCanvas area. The value returned reveals that the width of the ScrollCanvas

object is 240 pixels. To create a set of tiles that can produce an animated back-

ground, it is necessary to have a source figure that is either 240 pixels wide or can

be evenly divided so that the tiles that result from its division can produce an

image that is not fragmented as it is displayed.

You then call the createImage() method to create an instance of the Image class

that uses the range of hills illustrated in Figure A.1 as its source. You can resize

the Image object in any number of ways, but since you know that the value

470 Appendix n Scrolling Background

returned from the getWidth() method reveals that the ScrollCanvas area is

240 pixels wide, you can use an application like Photoshop to resize the source figure

to fit the dimensions of the display.

Accordingly, although the illustrated range of hills shown in Figure A.1 was

drawn without considerations of the size of the ScrollCanvas display area, using

Photoshop it proves fairly easy to modify it so that its width can be evenly divided

by the width of the ScrollCanvas display area. The source image that results

measures 720 by 240 pixels.

Precisely three times as long as it is high, the dimensions of the image depicting

the range of hills now open up different possibilities for creating a scrolling

background. One option is to segment the range into three tiles, each 240 pixels

wide. Another is to segment it into six tiles, as shown in Figure A.1, each

120 pixels wide and 240 pixels high. Segmenting the image into six tiles allows

you to define the index values of the tileIndex attribute.

In the lines following comment #2.1, you create a TiledLayer object and make

use of the information developed so far regarding the use of the Image object. The

TiledLayer object you create has six columns and one row. It uses the Image

ScrollCanvas 471

Figure A.1
Determine how you want to sequence the tiles.

object (bkgrndImage) object as its source. The dimensions of each cell in the

TiledLayer object are 120 pixels wide and 240 pixels high. As Figure A.2 illus-

trates, you canmake use of the tileIndex array to set the values in the TiledLayer

object so that it displays tiles successively.

The specific activity of loading the tiles into the TiledLayer object is attended to

in the lines following comment #3, where the scrollTiles() method is defined.

This method is called from the run() method. The scrollTiles() method

possesses only two responsibilities. The first is that of providing in infinite while

block in which the setCell()method is called twice in succession, loading as it is

called two successive tiles. The second responsibility is to create a Thread object

that can regulate the number of times each second the display of tiles is refreshed.

Making it so that tiles are displayed involves calling the setCell() method. This

method takes three arguments. The first two values define a cell within the

TiledLayer object. As Figure A.2 illustrates, six cells are defined for the bkgnd

TiledLayer object. Two successive cells, on the first row and in the first and

second columns, are used to display the tiles.

472 Appendix n Scrolling Background

Figure A.2
Set two cells at a time in the TiledLayer object, creating an entity that is wide enough to cover the
display.

To select the tiles that are displayed during each iteration of the while block, the

itr identifier is defined with a value of 0. When the flow of the program enters

the while block, the itr identifier is used as an argument to two successive calls to

the setCell()method. During each call, the itr identifier is incremented. As it is

incremented, it is used to retrieve tile identifiers from the tileIndex array. These

identifiers, in turn, are used to locate two successive tiles from the set of tiles

provided by the Image object.

The display that results during each iteration of the loop consists of two tiles and

covers the ScrollCanvas area, providing the illusion of a rolling range of hills.

When all size tiles have been displayed, the itr identifier is reset to 0, and the first

pair of frames is again accessed for display.

To display the tiles, the paint() and flushGraphics()methods are called.With the

call to these two methods, the entire area of the ScrollCanvas object is cleared

and repainted. The rate of display is controlled by the Thread::sleep() method,

which is set at 200, refreshing the display five times each second. The refresh rate

is roughly only a third of what is needed to create a realistic animation, but for

purposes of exploration, it provides a good beginning. Figure A.3 shows suc-

cessive views of the scrolling range of hills as they scroll across the display.

ScrollCanvas 473

Figure A.3
The successive display of tiles creates the illusion of movement.

This page intentionally left blank

A
abstraction, levels of, 220
Abstract Windows Toolkit. See AWT
Acorn, 3–5
actions, RecordListener object, 214–215
Add button, 103
addElement() method, 306
adding

code, NetBeans IDE 5.5, 128–131
commands, 263
Item subclass objects, 271
listeners, 206
messages, NetBeans IDE 5.5, 132–133
MIDlets, 83
mobility, NetBeans IDE 5.5, 118–119
properties, 103
quit command, 272
records, 175–176
value pairs, 103

addition calculations, 266–270
Add Property dialog box, 101
addRecord() method, 215
Alert class, 234–235
alerts, processing, 240–242
AlertType class, 234–235
anchors, 363
API (Application Programming Interface), 9

Connector class, 157–158
Game API, 222. See also Game API
HttpConnection interface, 158–159
LifecycleTest class, 143–150
MIDlet class, 140–143
MIDP, overview of, 139–140
networking, 156–157
NetworkingHTTPTest class, 159–162
PrintTask class, 155–156
Timer object, 150–152
TimerTask object, 150–152
TimerTest class, 152–156

appending, 283–285
implicit, 285–286

append() method, 271
Application Programming Interface. See API
applications

classes, 35
compiling, 79
JAM, 88
management, 25
management software, 140
MIDlets, 41
MIDs, 37
security, 24–25

applying colors, 362–364
architecture

Java ME, 16–17
SOA, 112

arcs, drawing, 366–368
arguments, drawArc() method, 367
assigning records, 213–214
associating

classes, 231
frame sequences, 401–405

attributes
random, 213
TILE_H_W class, 421
TimerTest class, 154
values, printing, 442

author information, retrieving, 235
avatars, showing positions of, 428
AWT (Abstract Windows Toolkit), 18

B
background colors, setting, 362
backing up code, 132
banners, 464
Basic Mobility Package, 118

installing, 121–122

475

INDEX

*.bat file, 89
bit OR (|) operator, 282–283
Blackberries, 3
blocks, while, 389
boundaries, 396–398

Diamond Dasher, 459–461
bounding boxes, 363
BPEL (Business Process Execution

Language), 112
browsers. See also interfaces

Netscape Navigator, 5
building

classes, 82–83
HelloToolkit.java files, 106–107

Business Process Execution Language. See BPEL
buttons

Add, 103
SELECT, 146, 391

bytecode, 7

C
C, 7
C++, 7

Java versus, 9–10
calculations

FormTextFieldTest class, 266–270
total identifier, 275

Calendar class, 323–326
calendar events, 325

generating, 335–336
processing, 334–335

CalendarFortune class, 326–338
canceling tasks, 155
Canvas class, 355–356. See also CGExplorer class

specializing, 361–362
categories of micro devices, 12–13
CDC (Connected Device Configuration), 18, 20
CDC Mobility Package, 118

installing, 120–121
CD command, 79
cell phones, 3
cells, setting, 422–424
CGExplorer class, 356–372
ChoiceGroup class, 291–292

objects, defining, 299–301
classes

Alert, 234–235
AlertType, 234–235
associating, 231
building, 82–83
Calendar, 323–326
CalendarFortune, 326–338
Canvas, 355–356, 361–362
CGExplorer, 356–372
ChoiceGroup, 291–292

ComedyChoiceGroup, 292–299
Command, 229–232
CommandListener, 149, 229–232
ComparatorTest, 192–198
Connector, 157–158
DasherCanvas, 443, 446–456
DasherSprite, 436–441
DasherStart, 435–436
Date, 323–326, 333–334
DateField, 326, 333–334
Display, 224–226
Displayable, 224–226
DisplayTest, 226–234
files, preverify command, 79–80
filterTest, 198–204
Font, 283–285
Form, 261–264
FormTextFieldTest, 266–275
Game API, 222
GameCanvas, 400–401
GameStart, 374–378
Gauge, 338–340
Graphics

colors, applying, 362–364
methods, 369–372

GSCanvas, 378–388
Hello, 81–82
hierarchies, 223
Image. See Image class
ImageItem, 308–311
ImageItemFind, 311–318
inner, images as, 319–321
Item, 261–263

events, 286–289
methods and modes, 288–289

ItemPlayTest, 276–282
Layer, 431
LayerManager, 431
LCDUI, 140, 221–224
libraries, 28–31, 34–36
LifecycleTest, 143–150
List, 242–257
Listener, 216
ListTest, 251
MIDlet, 140–143
NameGameTest, 235–242
NetworkingHTTPTest, 159–162
parent, 430
PrintTask, 155–156
Quotes, 295, 303–308
RecEnumTest, 184–190
RecordListenerTest, 206–213
RecordStore, 166–168
RecordStoreTest, 168–184
shells, creating, 128
SonnetMaker, 341–350

476 Index

Spacer, 285–286
Sprite, 401–405, 424–425
SpritePlay, 406–419
SpriteStart, 404–406
StringItem, 275–276
TextBox, 232–234, 239–240
TextField, 265–266
Thread, 389–393
TiledLayer, 419–427, 425–427
TimerTest, 152–156
UI, 140

CLASSPATH variables
JDK, setting, 66–68
MIDP, setting, 72–73
values, checking, 73

CLDC (Connected Limited Device
Configuration), 15, 18, 21–22
packages, 28–31
security, 22

clearing, 428–430
clearScreen() method, 429
clocks, 327
closing

emulators, 98
LifecycleTest class, 149
records, 177–178

code
backing up, 132
HelloToolkit MIDlet, creating, 102–107
NetBeans IDE 5.5, adding, 128–131
stages of, 8

codes, key event, 393
collection classes, 30
collisions, 396–398

detection, 427
events, 406, 426
Game API, 445–446
Sprite class, 424–425
TiledLayer class, 425–427

colors, 362–364
GSCanvas class, 387–388
setColor() method, 396

ComedyChoiceGroup class, 292–299
messages, processing, 301–302

commandAction() method, 149–150
Command class, 229–232
CommandListener class, 149, 229–232
Command Prompt

drag and drop navigation, 135
navigating, 76

commands
adding, 263
CD, 79
DIR, 86
JAR, 84
jar, 85

LifecycleTest class, 149–150
midp -version, 75
preverify, 75

automatically running, 106
class files, 79–80

quit, 272
set, 73

Compact Virtual Machine. See CVM
ComparatorTest class, 192–198
compare() method, 197
compiling

applications, 79
code, stages of, 8

CompositionTask object, 346–347
compression, 85
configuration

CDC, 18, 20
CLDC, 15, 18, 21–22
Java ME, 17–20
JDK, 63, 65
JWT 2.5 development settings, 91–92
MIDP, 68–69
security, 22
verifying, 74–76
working directories, 76

Connected Device Configuration. See CDC
Connected Limited Device Configuration.

See CLDC
connections

creating, 156–157
opening, 159

Connector class, 157–158
constants, 324
construction

Alert class, 241
CalendarFortune class, 331–332
Canvas class, 361
DasherCanvas class, 454–456
DasherSprite class, 439–441
FilterTest class, 203–204
FormTextFieldTest class, 270–272
GameStart class, 376–377
GSCanvas class, 386–387
ImageItemFind class, 317–318
ItemPlayTest class, 280–282
LifecycleTest class, 146–148
List class, 247–248
ListTest class, 254–255
NameGameTest class, 238–239
Quotes class, 306–308
RecordListenerTest class, 212–213
RecordStoreTest class, 173–175
SonnetMaker class, 345
SpritePlay class, 414–415
templates, 187
TimerTest class, 154–155

Index 477

content information, 85
coordinates, 396–398

pairs, 363
copying MIDP

to directories, 69–70
paths of, 70–71

createImage() method, 419
createRecordStore() methods, 213
createSprite() method, 417
creating

connections, 156–157
files, JWT 2.5, 108–109
HelloToolkit MIDlet code, 102–107
images, 417–419
JAD, 86–87
JAR files, 85
MIDlets, 77–78

NetBeans IDE 5.5, 124–128
suites, 87–89

new projects, JWT 2.5, 99–102
customization

JWT 2.5, 109–110
listeners, 207

CVM (Compact Virtual Machine), 16

D
DasherCanvas class, 443, 446–456
DasherSprite class, 436–441
DasherStart class, 435–436
DataStore::getRecord() method, 177
date and time classes, 30
Date class, 323–326, 333–334
DateField class, 326, 333–334
dates

events, 325
events, processing, 334–335

debugging, JVM DI, 28
default frame sequences, 402
default locations, JWT installations, 96
Default Platform Selection dialog box, 125
definition

CalendarFortune class, 331–332
Canvas class, 361
ComedyChoiceGroup class, 298–299
DasherCanvas class, 454–456
DasherSprite class, 439–441
filters, 204
FormTextFieldTest class, 270–272
GameStart class, 376–377
GSCanvas class, 386–387
ImageItemFind class, 317–318
ItemPlayTest class, 280–282
List class, 247–248
ListTest class, 254–255
NameGameTest class, 238–239

objects, ChoiceGroup class, 299–301
Quotes class, 306–308
SonnetMaker class, 345
SpritePlay class, 414–415

degree values, drawArc() method, 367
delayOfLoop identifier, 390
delays, 150
deleting records, 178–180
designating degree values, 367
destroyApp() method, 177
destroying records, 177–178
detection, collisions, 396–398, 427
detectWallTileCollision() method, 426
development

IDE (integrated development environment), 92
Java ME overview, 15
JWT 2.5 settings, 91–92
MIDlets, 37
non-Java development tools, 13
SDKs, 15

devices
CDC, 18, 20
CLDC, 15, 21–22
micro devices and software, 12–13
MIDP, 15, 19, 31–32
MIDs, 3, 45–46. See also MIDs
Motorola, 54–55

A830, 55–56
E550, 57
iDEN phones, 56–57

Nokia, 46
Series 30, 46–47
Series 40, 47–50
Series 60, 50
Series 80, 50–52
Series 90, 52

security, 22
Sony Ericsson, 53

K310, 53–54
Z520, 54

dialog boxes
Add Property, 101
Default Platform Selection, 125
New Empty File, 133
Start Copying Files, 96
System Properties, 72
User Defined, 104

Diamond Dasher, 433–435
boundaries and random jumps, 459–461
collisions, 445–446
DasherCanvas class, 446–456
DasherSprite class, 436–441
DasherStart class, 435–436
diamonds, positioning, 442–445
diamonds, production, 441–442
running, 459

478 Index

scoring, 463
starting, 457–458
updating, 461–463

DIR command, 86
directories

drag and drop navigation, 135
JAR files, opening, 86
JWT, installing, 95
MIDP, copying to, 69–70
working, setting up, 76

Displayable class, 224–226
Display class, 224–226
Display::getCurrent() method, 225
displaying

graphics. See graphics
records, 176–177, 189
text, 242

displayRecordStore() method, 196
Display::setCurrent() method, 355
DisplayTest class, 226–234
downloading

JDK, 63–64
JWT 2.5, 94
mobility, 119–120
NetBeans IDE 5.5, 113

drag and drop navigation, 135
drawArc() method, 367
drawDivisons() method, 396
drawing arcs, 366–368
drawLine() method, 365–366
drawRect() method, 364
drawString() method, 365–366

E
editions, 10, 17
elementAt() method, 307
emulators

closing, 98
HelloToolkit MIDlet, running, 107
operating, 88

enumerateRecords() method, 182, 189–190,
196–197

Enumeration::hasMoreElements() method, 190
Enumeration object, 188
enumerations, RecEnumTest class,

187–189
errors

classes, handling, 26
events

calendars, 325
generating, 335–336
processing, 334–335

collisions, 406, 426
Gauge class, 340
GSCanvas class, 378–388

Item class, 286–289
key

event codes, 393
Game API, 427–430

processing, 229, 231, 272–275
Thread class, 391–393

exceptions
classes, 31
RMS, 216–217

EXCLUSIVE mode, 244
exit messages, 350
extended Canvas class work, 372–374
extends keyword, 82

F
factory classes, Connector class, 157–158
files

*.bat, 89
classes, preverify command, 79–80
GIF, 387
GSCanvas class, 387–388
hello2.java, 81–82
HelloNetBeansMIDlet.java, 127
hellosuite.jad, 86
HelloToolkit.java, running, 106–107
JAD, 37, 40–42

creating, 108–109
modifying, 89–90
NetBeans IDE 5.5, 131–132
NetBeans IDE 5.5, modifying,

134–136
specifying, 88

JAR, 84–86
creating, 108–109
NetBeans IDE 5.5, 131–132

JWT 2.5, creating, 108–109
manifest, 84–85, 108–109
MIDP, copying to directories, 69–70
PNG, 387
retrieving, 321

fillRect() method, 429
filters

defining, 204
RecordFilter object, 198–205

filterTest class, 198–204
finalization, 25–26
findYBoundary() method, 459
flushing, 428–430
folders

MIDP, copying to directories, 69–70
NetBeans IDE 5.5, 126

Font class, 283–285
fonts

formatting, 302–303
viewing, 302–303

Index 479

formatting
DateField class, 333
fonts, 302–303

Form class, 261–264
form parameters, 364
Form::size() method, 285
FormTextFieldTest class, 266–275
frame pointers, 402
frame sequences, 401–405, 415–417

G
Gage, John, 5
Game API, 399–400

boundaries and random jumps, 459–461
classes, 222
collisions, 445–446
DasherCanvas class, 446–456
DasherSprite class, 436–441
DasherStart class, 435–436
Diamond Dasher, 433–435
diamonds, positioning, 442–445
diamonds, production, 441–442
GameCanvas class, 400–401
games, running, 459
games, starting, 457–458
key events, 427–430
parent classes, 430
scoring, 463
Sprite class, 401–405
SpritePlay class, 406–419
SpriteStart class, 404–406
TiledLayer class, 419–427
updating, 461–463

GameCanvas class, 400–401
game classes, 36

Canvas class, 355–356
CGExplorer class, 356–372
extended Canvas class work,

372–374
GameStart class, 374–378
GSCanvas class, 378–388
Thread class, 389–393

GameStart class, 374–378
Gauge class, 338–340
GCF (Generic Connection Framework), 156
general utility classes, 34
generating events, calendars, 335–336
Generic Connection Framework. See GCF
getAppProperty() method, 131
getDisplay() method, 224
getFileName() method, 318
getHeight() method, 365
getImage() method, 387
getInformation() method, 241

getInstance() method, 331–332
getProspects() method, 336
getQuotes() method, 307
getRecord() method, 182
getSelectedFlags() method, 251
getSelectedIndex() method, 242
getWidth() method, 365
GIF files, 387
Gosling, James, 4
graphics, 265–275

bit OR (|) operator, 282–283
Font class, 283–285
Form class, 261–264
games. See Game API
Image class. See Image class
implicit appending, 285–286
ItemPlayTest class, 276–282
spacers, 285–286
StringItem class, 275–276

Graphics class. See also CGExplorer class
colors, applying, 362–364
methods, 369–372

Green Team, 4
group lists, 291–292
growth of Java, 5–7
GSCanvas class, 378–388

H
hardware configurations, 17–20. See also

configuration; devices
hasNextElement() method, 190
Hello class, 81–82
hello2.java file, 81–82
HelloNetBeansMIDlet.java file, 127
hellosuite.jad file, 86
HelloToolkit.jave file, running, 106–107
HelloToolkit MIDlet code, creating,

102–107
hierarchies of classes, 223
high-level API classes, 222
history of Java ME, 3

Acorn, 3–5
growth of Java, 5–7
micro devices and software, 12–13
MIDs, overview of, 11–12
multiple editions, 10
overview of Java, 7–10

HotJava, 5
HttpConnection interface, 158–159

I
IDE (integrated development environment), 92

NetBeans IDE 5.5. See NetBeans IDE 5.5

480 Index

identifiers
delayOfLoop, 390
total, 275

Image class. See also CGExplorer class
Calendar class, 323–326
CalendarFortune class, 326–338
ChoiceGroup class, 291–292
ComedyChoiceGroup class, 292–299
CompositionTask object, 346–347
Date class, 323–326, 333–334
DateField class, 326
Gauge class, 338–340
ImageItem class, 308–311
ImageItemFind class, 311–318
images, retrieving, 318–319
images as inner classes, 319–321
lines, viewing, 347–348
Quotes class, 303–308
SonnetMaker class, 341–350

Image::createImage() method, 366
ImageItem class, 308–311
ImageItemFind class, 311–318
images

creating, 417–419
frame sequences, 401–405
GSCanvas class, 387–388
as inner classes, 319–321
rendering, 366–368
retrieving, 318–319
transforming, 424–425

implicit appending, 285–286
IMPLICIT mode, 244
imports

LifecycleTest class, 146–148
TimerTest class, 154–155

indexes, retrieving, 176
indexOf() method, 204
inner classes

images as, 319–321
PrintTask class, 155–156

input/output classes, 30
installation

Basic Mobility Package, 121–122
CDC Mobility Package, 120–121
JDK, 63, 65, 68
JWT 2.5, 93–96
MIDP, 68–69, 74–76
NetBeans IDE 5.5, 113–116

instances, calling, 355
integrated development environment. See IDE
interactions, DisplayTest class, 226–234
interfaces

API, 9. See also API
Connector class, 157–158
HttpConnection, 158–159

ItemCommandListener, 262
ItemStateListner, 274
JVM DI, 28
LCDUI, 140
Netscape Navigator, 5
RecordFilter, 204–205
RecordListener, 215–216
RecordsComparator, 197–198
Runnable, 389–393, 439
UI, 140. See also UI

iPhones, 3
iPods, 3
Item class, 261–263

events, 286–289
methods and modes, 288–289

ItemCommandListener interface, 262
ItemPlayTest class, 276–282
items, rendering, 363
ItemStateListner interface, 274
iteration, records, 181–184

J
JAD (Java application descriptor) files, 37, 40–42

creating, 86–87
files

creating, 108–109
modifying, 89–90
specifying, 88

NetBeans IDE 5.5, 131–132
modifying, 134–136

JAM (Java Application Manager), 88
jar command, 85
JAR (Java Archive) files, 84–86

creating, 108–109
NetBeans IDE 5.5, 131–132
opening, 86

Java API, 9. See also API
Java application descriptor files. See JAD files
Java Application Manager. See JAM
Java Archive files. See JAR files
Java Development Kit. See JDK
Java 2 Enterprise Edition (J2EE), 10
Java HotSpot VM, 16
Java ME

applications
management, 25
security, 24–25

architecture, 16–17
CDC, 20
classes, libraries of, 28–31
CLDC, 21–22
configurations, 17–20
error handling, 26
finalization, 25–26

Index 481

Java ME (continued)
history of, 3

Acorn, 3–5
growth of Java, 5–7
micro devices and software, 12–13
MIDs, overview of, 11–12
multiple editions, 10
overview of Java, 7–10

KVM, features of, 27–28
MIDP, 31–32
MIDP 2.0 game package, 36–37
MIDs, 37–42
profiles, 17–20
restrictions, 25
target hardware environment, 32
target software environment, 32–33
toolkits, 15–16
versions, 26–27
virtual machine security layer, 22–24

Java 2 Standard Edition (J2SE), 10
Java versus C++, 9–10
Java Virtual Machine. See JVM
Java Virtual Machine Debugging Interface.

See JVM DI
Java Wireless Toolkit 2.5. See JWT 2.5
JDK (Java Development Kit), 9, 61–62

copying path information, 65–66
installing, 63, 65
JWT, installing in, 95
obtaining, 63–64
setting Path and CLASSPATH variables, 66–68
starting, 64–65
testing installation, 68

Joy, Bill, 5
jumps, Diamond Dasher, 459–461
JVM DI (Java Virtual Machine Debugging

Interface), 28
JVM (Java Virtual Machine), 7, 9
JWT (Java Wireless Toolkit) 2.5, 91

development settings, 91–92
files, creating, 108–109
HelloToolkit.java file, running, 106–107
HelloToolkit MIDlet code, creating, 102–107
installing, 93–96
navigating, 97–99
new projects, creating, 99–102
options, 109–110

K
key events

codes, 393
Game API, 427–430

key values, Thread class, 391–393
keywords, extends, 82
Kilobyte Virtual Machine. See KVM

KVM (Kilobyte Virtual Machine), 16
features of, 27–28

L
Label property, 230
language classes, 34–35
Layer class, 431
LayerManager class, 431
layers, virtual machine security, 22–24
LAYOUT_DEFAULT property, 282
LCDUI (Liquid Crystal Display User Interface),

140, 219–224
classes, 221–224
implementation, 19

levels of abstraction, 220
libraries, 18

of classes, 28–31
MIDP, 34–36

LifecycleTest class, 143–150
lines, viewing, 347–348
Liquid Crystal Display User Interface.

See LCDUI
List class, 242–257
Listener class, 216
listeners

adding, 206
CommandListener class, 229–232
customization, 207

List::getSelectedFlags() method, 255
lists

groups, 291–292
with multiple selection, 251–257
with single selection, 242–247

ListTest class, 251
literal strings, 283–285
loops, 390
low-level API classes, 222

M
makeColor() method, 387
MakeImage() method, 387
makeQuotes() method, 306
management

application management software, 140
applications, 25
JAM, 88
objects, 263
RMS, 165. See also RMS

manifest files, 84–85
creating, 108–109

mapping collisions, 398
match() method, 204
memory, RecordStore class, 166–168
Message property, 134

482 Index

messages
addRecord() method, 215
ComedyChoiceGroup class, 301–302
groups, listing, 291–292
from Item objects, 273
ItemStateListner interface, 274
NetBeans IDE 5.5, 132–133
processing, 249–251, 255–257
stop and exit, 350
winner, 462

methods
addElement(), 306
addRecord(), 215
Alert class, 234
AlertType class, 234
append(), 271
Canvas class, 357–358
ChoiceGroup class, 293–294
clearScreen(), 429
commandAction(), 149–150
compare(), 197
Connector class, 158
createImage(), 419
createRecordStore(), 213
createSprite(), 417
DataStore::getRecord(), 177
DateField class, 327
destroyApp(), 177
detectWallTileCollision(), 426
Displayable class, 225
Display class, 224
Display::getCurrent(), 225
displayRecordStore(), 196
Display::setCurrent(), 355
drawArc(), 367
drawDivisons(), 396
drawLine(), 365–366
drawRect(), 364
drawString(), 365–366
elementAt(), 307
enumerateRecords(), 182, 189–190, 196–197
Enumeration::hasMoreElements(), 190
fillRect(), 429
findYBoundary(), 459
Form class, 264
Form::size(), 285
Gauge class, 339
getAppProperty(), 131
getDisplay(), 224
getFileName(), 318
getHeight(), 365
getImage(), 387
getInformation(), 241
getInstance(), 331–332
getProspects(), 336
getQuotes(), 307

getRecord(), 182
getSelectedFlags(), 251
getSelectedIndex(), 242
getWidth(), 365
Graphics class, 369–372
hasNextElement(), 190
HttpConnection interface, 159
Image::createImage(), 366
ImageItem class, 309–310
indexOf(), 204
Item class, 288–289
Layer class, 431
LayerManager class, 431
List class, 243
List::getSelectedFlags(), 255
makeColor(), 387
MakeImage(), 387
makeQuotes(), 306
match(), 204
MIDlet class, 141
nextElement(), 189
nextRecordId(), 196
open(), 157
paint(), 355
pauseApp(), 149
Random::nextInt(), 307
RecordComparator object, 190–192
RecordListener class, 207
RecordStore::enumerateRecords(), 189–190
RecordStoreTest class, 169
removeRecord(), 178–180
RMI, 28
run(), 389, 439
schedule(), 155
setColor(), 396
setCurrent(), 226
setFont(), 284, 348
setFrame(), 418
setFrameSequence(), 402
setImages(), 387
setLabel(), 347
setLayout(), 282
setMaxValue(), 340
Settings(), 443
setUpVector(), 248
size(), 307
Sprite class, 403–404
start(), 389, 439
startApp(), 141, 148–149
StringItem classes, 276
TextBox class, 233
TextBox::delete(), 239
TextField class, 265–266
Thread class, 390
Thread::sleep(), 389
Thread::start(), 389

Index 483

methods (continued)
TiledLayer class, 420
Timer class, 151
TimerTask class, 152
translate(), 368
updateRecord(), 181

micro devices and software, 12–13
MIDlet class, 140–143
MIDlets

adding, 83
applications, 41
creating, 77–78
development, 37
HelloToolkit, creating code, 102–107
ItemPlayTest class, 281
NetBeans IDE 5.5, creating, 124–128
persistence, 165–166. See also RMS
running, 80, 87–89
suites, 80–90

MIDP 2.0 game package, 36–37
MIDP_HOME variables, setting, 74
MIDP (Mobile Information Device Profile), 15,

19, 31–32, 61–62
API, overview of, 139–140
class libraries, 34–36
configuration, verifying, 74–76
directories, copying to, 69–70
installing, 68–69
MIDP_HOME variable, setting, 74
packages, 34–36
paths of, copying the, 70–71
variables, setting, 72–73

midp -version command, 75
MIDs (mobile information devices), 3

applications, 37
Java ME overview, 15
Motorola, 54–55

A830, 55–56
E550, 57
iDEN phones, 56–57

NetBeans IDE 5.5. See NetBeans IDE 5.5
Nokia

Series 30, 46–47
Series 40, 47–50
Series 60, 50
Series 80, 50–52
Series 90, 52

overview of, 11–12, 45–46
run-time environment, 38
Sony Ericsson, 53

K310, 53–54
Z520, 54

suite packaging, 38–40
Mobile Information Device Profile. See MIDP
mobile information devices. See MIDs
mobility, NetBeans IDE 5.5

adding, 118–119
confirming installations, 122–123
downloading packages, 119–120
installing

Basic Mobility Package, 121–122
CDC Mobility Package, 120–121

modes
Connector class, 158
Item class, 288–289

modifying JAD files, 89–90, 134–136
motion, setting, 392
Motorola, 54–55

A830, 55–56
E550, 57
iDEN phones, 56–57

multiple editions, 10
multiple selection, lists with, 251–257
multiplication calculations, 266–270

N
NameGameTest class, 235–242
naming projects, 100
Naughton, Patrick, 5
navigating

Command Prompt, 76
drag and drop navigation, 135
JWT 2.5, 97–99

NetBeans IDE 5.5, 92, 111–112
code, adding, 128–131
installing, 113–116
JAD files, 131–132, 134–136
JAR files, 131–132
messages, adding, 132–133
MIDlet class, 142–143
MIDlets, creating, 124–128
mobility

adding, 118–119
confirming installations, 122–123
downloading packages, 119–120
installing Basic Mobility Package, 121–122
installing CDC Mobility Package,

120–121
output, 421
verifying, 116–117

Netscape Navigator, 5
networking, 156–157

classes, 36
NetworkingHTTPTest class, 159–162
New Empty File dialog box, 133
new projects, JWT 2.5, 99–102
nextElement() method, 189
nextRecordId() method, 196
Nokia, 46

Series 30, 46–47
Series 40, 47–50

484 Index

Series 60, 50
Series 80, 50–52
Series 90, 52

non-Java development tools, 13

O
Oak, 4, 5
objects. See also classes

ChoiceGroup class, defining, 299–301
CompositionTask, 346–347
Enumeration, 188
Item class, 263. See also Form class
RecordComparator, 190–192
RecordEnumeration, 181–184
RecordFilter, 198–205
RecordListener, 205–217
textFieldA, 273
Timer, 150–152
TimerTask, 150–152
Vector, 188

obtaining
JDK, 63–64
JWT 2.5, 94

opening. See also starting
JAR files, 86
streams, 159

open() method, 157
operators, bit OR (|), 282–283
options, JWT 2.5, 109–110
output, NetBeans IDE 5.5, 421

P
packages

Basic Mobility Package, 118, 121–122
CDC Mobility Package, 118, 120–121
CLDC, 28–31
MIDP, 34–36
MIDP 2.0 game package, 36–37
mobility, downloading NetBeans IDE 5.5,

119–120
RMS, 167. See also RMS

painting, 395–396
paint() method, 355
pairs, adding values, 103
parameters, forms, 364
parent classes, 430
paths, drag and drop navigation, 135
Path variables

JDK, setting, 66–68
MIDP, setting, 72–73

pauseApp() method, 149
PDAs (personal digital assistants), 18
periods, designation of, 150
persistence, RMS, 165–166

personal digital assistants. See PDAs
platforms

Java editions, 17
selecting, 101

PNG files, 387
retrieving, 321

pointers, frame, 402
positioning diamonds, 442–445
pre-verification processes, 23
preverify command, 75

automatically running, 106
class files, 79–80

printing attribute values, 442
PrintTask class, 155–156
Priority property
processing

alerts, 240–242
events, 229, 231

calendars and dates, 334–335
FormItemTextFieldTest class,

272–275
GSCanvas class, 378–388

messages, 249–251, 255–257, 301–302
profiles

Java ME, 17–20
MIDP, 15, 19, 31–32

prognostication, 336–337
projects

JWT 2.5, creating, 99–102
MIDlets, creating, 124–128
naming, 100

properties
adding, 103
Alert class, 234
AlertType class, 234
Command class, 229–230
DateField class, 327
HttpConnection interface, 159
ImageItem class, 309–310
LAYOUT_DEFAULT, 282
List class, 243
Message, 134
Sprite class, 403–404
TextBox class, 233

Q
quit command, 272
Quotes class, 295, 303–308

R
random attributes, 213
random jumps, Diamond Dasher, 459–461
Random::nextInt() method, 307
RecEnumTest class, 184–190

Index 485

RecordComparator object, 190–192
RecordEnumeration object, 181–184
RecordFilter interface, 204–205
RecordFilter object, 198–205
RECORD_LIMIT, 212
RecordListener interface, 215–216
RecordListener object, 205–217
RecordListenerTest class, 206–213
record management classes, 35–36
Record Management System. See RMS
records

adding, 175–176
assigning, 213–214
closing, 177–178
deleting, 178–180
destroying, 177–178
displaying, 176–177, 189
iteration, 181–184
retrieving, 176–177
sorting, 192
updating, 181

RecordsComparator interface, 197–198
RecordStore class, 166–168
RecordStore::enumerateRecords() method,

189–190
RecordStoreTest class, 168–184
rectangles, 364–365
Remote Method Invocation. See RMI
removeRecord() method, 178–180
rendering

images, 366–368
items, 363

repainting, 395–396
Required view, 102
requirements, storage, 176
restrictions, Java ME, 25
retrieving

author information, 235
images, 318–319
indexes, 176
PNG files, 321
records, 176–177

RMI (Remote Method Invocation), 28
RMS (Record Management System), 165

ComparatorTest class, 192–198
exceptions, 216–217
persistence, 165–166
RecEnumTest class, 184–190
RecordComparator object, 190–192
RecordFilter object, 198–205
RecordListener object, 205–217
RecordStore class, 166–168
RecordStoreTest class, 168–184

Rosling, Wayne, 5
run() method, 389, 439

Runnable interface, 389–393, 439
running

Diamond Dasher, 459
HelloToolkit.java files, 106–107
MIDlets, 80
MIDlet suites, 87–89

run-time environment, MIDs, 38

S
sandbox security model, 24
saving code, 132
schedule() method, 155
Schmidt, Eric, 5
scores, Diamond Dasher, 463
SCREEN, 231
screens

interactions, DisplayTest class,
226–234

splash, 377–378
SDKs (software development kits), 15
security

applications, 24–25
CLDC, 22
virtual machine security layer, 22–24

SELECT button, 146, 391
selecting target platforms, 101
sequences, frame, 401–405

SpritePlay class, 415–417
Service Oriented Architecture. See SOA
setColor() method, 396
set command, 73
setCurrent() method, 226
setFont() method, 284, 348
setFrame() method, 418
setFrameSequence() method, 402
setImages() method, 387
setLabel() method, 347
setLayout() method, 282
setMaxValue() method, 340
setting. See also configuration

cells, 422–424
MIDP_HOME variables, 74
motion, 392
Path and CLASSPATH variables, 66–68

Settings() method, 443
setUpVector() method, 248
shells, creating, 128
showing positions of avatars, 428
single selection, lists with, 242–247
size() method, 307
SOA (Service Oriented Architecture), 112
software

application management, 140
micro devices and, 12–13

486 Index

software development kits. See SDKs
SonnetMaker class, 341–350
Sony Ericsson, 53

K310, 53–54
Z520, 54

sorting records, 192
source code, 104. See also code
Spacer class, 285–286
spacers, 285–286
specializing, Canvas class, 361–362
specifying JAD files, 88
splash screens, 377–378
Sprite class, 401–405

collisions, 424–425
SpritePlay class, 406–419
SpriteStart class, 404–406
standard divisions, 398
startApp() method, 141, 148–149
Start Copying Files dialog box, 96
starting

Diamond Dasher, 457–458
emulators, 88
JDK, 64–65
LifecycleTest class, 148–149

start() method, 389, 439
stop messages, 350
stopping LifecycleTest class,

148–149
storage requirements, 176
streams, opening, 159
StringBuffer type, 307
StringItem class, 275–276
strings, 365–366

literal, 283–285
suites

MIDlets, 80–90
packaging, MIDs, 38–40
running, 87–89

summary information, games, 464
support, MIDP API, 140
system classes, 30, 222
System Properties dialog box, 72
system variables, setting, 66–68

T
target hardware environment, 32
target platforms, selecting, 101
target software environment, 32–33
tasks, canceling, 155
template construction, 187
testing

JDK installation, 68
MIDP installation, 74–76
NetBeans IDE 5.5 installation, 116–117

text
API, 139. See also API
displaying, 242

TextBox class, 232–234, 239–240
TextBox::delete() method, 239
textFieldA object, 273
TextField class, 265–266
Thread class, 389–393
Thread::sleep() method, 389
Thread::start() method, 389
TiledLayer class, 419–427
TILE_H_W class attribute, 421
time and dates, 323–326
Timer object, 150–152
TimerTask object, 150–152
TimerTest class, 152–156
timing, 428–430
toolkits

AWT, 18
Java ME, 15–16
JWT. See JWT

tools, 61–62
JDK

copying path information, 65–66
installing, 63, 65
obtaining, 63–64
setting Path and CLASSPATH variables,

66–68
starting, 64–65
testing installation, 68

MIDP
copying the paths of, 70–71
copying to directories, 69–70
installing, 68–69
setting MIDP_HOME variable, 74
variables, setting, 72–73
verifying configuration, 74–76

non-Java development, 13
total identifier, 275
transforming images, 424–425
translate() method, 368
translation, 368–372
troubleshooting records, 180
type classes, 30, 34–35
Type property, 229
types

Item class, 263. See also Form class
StringBuffer, 307

U
UI (User Interface), 140

classes, 35
Displayable class, 224–226
Display class, 224–226

Index 487

UI (User Interface) (continued)
DisplayTest class, 226–234
LCDUI, 219–224
List class, 242–257
NameGameTest class, 235–242

UML (Unified Modeling Language), 434
Unified Modeling Language. See UML
updateRecord() method, 181
updating

Diamond Dasher, 461–463
records, 181

User Defined dialog box, 104
User Interface. See UI
utility classes, 222

V
values

attributes, printing, 442
Calendar class, setting, 324
DasherCanvas class, 444
DasherSprite class, 444
drawArc() method, 367
Gauge class, 339
pairs, adding, 103
records, retrieving, 176–177
Thread class, 390, 391–393
translation, 368
x and y, 392

variables
JDK, setting, 66–68
MIDP, setting, 72–73

Vector object, 188
vectors

List class, 248–249
RecEnumTest class, 187–189

verification
MIDP configuration, 74–76
NetBeans IDE 5.5, 116–117

versions, 10, 17, 26–27
viewing

Alert class, 234
fonts, 302–303
graphics. See graphics
lines, 347–348
records, 176–177, 189
text, 242

views, Required, 102
virtual machine security layer,

22–24

W
WebRunner, 5
Web Services Description Language.

See WSDL
website streams, opening, 159
while block, 389
Windows JDK, 64–65. See also JDK
winner messages, 462
working directories, setting up, 76
WSDL (Web Services Description

Language), 112

X
XML Schema, 112
x values, 392

Y
y values, 392

488 Index

www.courseptr.com
www.courseptr.com

www.courseptr.com

www.courseptr.com

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following terms

and conditions. If, upon reading the following license agreement and notice of

limited warranty, you cannot agree to the terms and conditions set forth, return the

unused book with unopened disc to the place where you purchased it for a refund.

License
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.

You are licensed to copy the software onto a single computer for use by a single user and to a

backup disc. You may not reproduce, make copies, or distribute copies or rent or lease the

software in whole or in part, except with written permission of the copyright holder(s). You may

transfer the enclosed disc only together with this license, and only if you destroy all other copies

of the software and the transferee agrees to the terms of the license. You may not decompile,

reverse assemble, or reverse engineer the software.

Notice of Limited Warranty
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical

defects in materials and workmanship for a period of sixty (60) days from end user’s purchase

of the book/disc combination. During the sixty-day term of the limited warranty, Thomson

Course Technology PTR will provide a replacement disc upon the return of a defective disc.

Limited Liability
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST

ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL

THOMSON COURSE TECHNOLOGY PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER

DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE

FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM,

DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF THOMSON

COURSE TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED

THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM

ANY AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING

WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR

PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR

EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of

law principles. The United Convention of Contracts for the International Sale of Goods is

specifically disclaimed. This Agreement constitutes the entire agreement between you and

Thomson Course Technology PTR regarding use of the software.

mohammad
Typewriter
www.FDL.ir 2005-2009

